Answer:
The rocket will reach its maximum height after 6.13 seconds
Step-by-step explanation:
To find the time of the maximum height of the rocket differentiate the equation of the height with respect to the time and then equate the differentiation by 0 to find the time of the maximum height
∵ y is the height of the rocket after launch, x seconds
∵ y = -16x² + 196x + 126
- Differentiate y with respect to x
∴ y' = -16(2)x + 196
∴ y' = -32x + 196
- Equate y' by 0
∴ 0 = -32x + 196
- Add 32x to both sides
∴ 32x = 196
- Divide both sides by 32
∴ x = 6.125 seconds
- Round it to the nearest hundredth
∴ x = 6.13 seconds
∴ The rocket will reach its maximum height after 6.13 seconds
There is another solution you can find the vertex point (h , k) of the graph of the quadratic equation y = ax² + bx + c, where h =
and k is the value of y at x = h and k is the maximum/minimum value
∵ a = -16 , b = 196
∴ 
∴ h = 6.125
∵ h is the value of x at the maximum height
∴ x = 6.125 seconds
- Round it to the nearest hundredth
∴ x = 6.13 seconds
Divide 3 on both sides
x=3.33
16 ounces is 1 pound.
So 1 ounce will be 1/16 pound.
750 × 1/16

3x+8x=3333
11x=3333
X= 303
Boys 3x,so 3*303=909
Answer:
number 2 or 4 but i think 2
Step-by-step explanation: