espero y te ayude, cualquier cosa escríbeme
Answer: 12.5
Step-by-step explanation: The triangle ABC and its altitude is represented in the figure below.
<u>Altitude</u> is a segment of line that link a vertex and the opposite side, forming a right angle.
So, because of , now we have two similar triangles, which means that ratios of corresponding sides are equal:
(1)
This is always true for a right triangle and a altitude drawn to the hypotenuse.
Triangle BDC is also right triangle. So, we can use Pythagorean theorem to determine the missing side.
(2)
Substituting (2) into (1):
We want to find f, so:
f = 7.5
The length of is
The length of the hypotenuse of triangle ABC is 12.5 units.
Answer: raise 2 to the number of days, and then multiply this value by 3.
Step-by-step explanation:
The <em>exponential</em> function y = 290 · 0.31ˣ reports a decay as its <em>growth</em> rate is less than 1 and greater than 0. Its <em>percentage</em> rate of decrease is equal to 69 %.
<h3>How to determine the behavior of an exponential function</h3>
<em>Exponential</em> functions are <em>trascendental</em> functions, these are, functions that cannot be described <em>algebraically</em>. The <em>simplest</em> form of <em>exponential</em> functions is shown below:
y = a · bˣ (1)
Where:
- a - Initial value
- b - Growth rate
- x - Independent variable.
- y - Dependent variable.
Please notice that this kind of <em>exponential</em> function reports a <em>growth</em> for b > 1 and <em>decay</em> for b < 1 and b > 0. According to the statement we have the function y = 290 · 0.31ˣ, then we conclude that the exponential function given reports a <em>decay</em>.
The <em>percentage</em> rate of decrease is determined by the following formula:
100 × (1-0.31) = 100 × 0.69 = 69 %
The <em>percentage</em> rate of decrease related to the <em>exponential</em> function is 69 %.
To learn more on exponential functions: brainly.com/question/11487261
#SPJ1
Answer:
Step-by-step explanation:
The general exponential function is,
The points given in the table are,
Putting in the general equation, we get
And
Putting the value of a,
Now the exponential function becomes,