Hoods become necessary any time water temperatures drop below: 20°C/68°F.
<h3>Why is it necessary to use
Hoods any time
water temperatures drop below:
20°C/68°F?</h3>
It is important to use hood so as to adjust the cold temperature, so as to be able to gain heat.
Therefore, hood serves as a covering for the head as well as the neck which has a opening face that prevent cold.
Learn more about temperatures at
brainly.com/question/25677592
#SPJ1
Using sum and difference identities from trigonometric identities shows that; Asin(ωt)cos(φ) +Acos(ωt)sin(φ) = Asin(ωt + φ)
<h3>How to prove Trigonometric Identities?</h3>
We know from sum and difference identities that;
sin (α + β) = sin(α)cos(β) + cos(α)sin(β)
sin (α - β) = sin(α)cos(β) - cos(α)sin(β)
c₂ = Acos(φ)
c₁ = Asin(φ)
The Pythagorean identity can be invoked to simplify the sum of squares:
c₁² + c₂² =
(Asin(φ))² + (Acos(φ))²
= A²(sin(φ)² +cos(φ)²)
= A² * 1
= A²
Using common factor as shown in the trigonometric identity above for Asin(ωt)cos(φ) +Acos(ωt)sin(φ) gives us; Asin(ωt + φ)
Complete Question is;
y(t) = distance of weight from equilibrium position
ω = Angular Frequency (measured in radians per second)
A = Amplitude
φ = Phase shift
c₂ = Acos(φ)
c₁ = Asin(φ)
Use the information above and the trigonometric identities to prove that
Asin(ωt + φ) = Asin(ωt)cos(φ) +Acos(ωt)sin(φ)
Read more about Trigonometric Identities at; brainly.com/question/7331447
#SPJ1
Because credit is when you don't have cash so you get that cash later and pay a bill.
Answer: Twice the previous time would be taken to reach the same speed v with the puck of mass 2m.
Explanation:
Let a Force pushes the hockey puck of mass m.
Then acceleration, a= \frac{F}{m}a=mF
From the equation of motion,
\begin{gathered}\➪ v=u+at\\ v=0+\frac{F}{m}\Delta t\end{gathered}⇒v=u+atv=0+mFΔt ......(1)
In the second case, when mass is 2m, then acceleration,
a'=\frac{F}{2m}a′=2mF
and t' is the time taken.
The final speed is v,
\begin{gathered}\➪ v=0+ a't'\\ \➪ \frac {F}{m}\Delta t=\frac{F}{2m}t'\\ \➪ t'= 2\Delta t\end{gathered}⇒v=0+a′t′⇒mFΔt=2mFt′⇒t′=2Δt using equation (1)
Hence, it would take two times the previous amount of time to push the pluck of double mass.
<em><u> </u></em><em><u>I</u></em><em><u> </u></em><em><u>hope</u></em><em><u> </u></em><em><u>this</u></em><em><u> </u></em><em><u>is</u></em><em><u> </u></em><em><u>understandable</u></em><em><u> </u></em><em><u>and</u></em><em><u> </u></em><em><u>if</u></em><em><u> </u></em><em><u>my</u></em><em><u> </u></em><em><u>answer</u></em><em><u> </u></em><em><u>helped</u></em><em><u> </u></em><em><u>you</u></em><em><u> </u></em><em><u>please</u></em><em><u> </u></em><em><u>can</u></em><em><u> </u></em><em><u>you</u></em><em><u> </u></em><em><u>give</u></em><em><u> </u></em><em><u>me</u></em><em><u> </u></em><em><u>a</u></em><em><u> </u></em><em><u>brainliest</u></em><em><u> </u></em><em><u>its</u></em><em><u> </u></em><em><u>will</u></em><em><u> </u></em><em><u>really</u></em><em><u> </u></em><em><u>help</u></em><em><u> </u></em><em><u>me</u></em><em><u> </u></em><em><u>and</u></em><em><u> </u></em><em><u>thank</u></em><em><u> </u></em><em><u>you</u></em><em><u> </u></em><em><u>have</u></em><em><u> </u></em><em><u>a</u></em><em><u> </u></em><em><u>nice</u></em><em><u> </u></em><em><u>day</u></em><em><u>!</u></em><em><u>!</u></em>