<span>N(t) = 16t ; Distance north of spot at time t for the liner.
W(t) = 14(t-1); Distance west of spot at time t for the tanker.
d(t) = sqrt(N(t)^2 + W(t)^2) ; Distance between both ships at time t.
Let's create a function to express the distance north of the spot that the luxury liner is at time t. We will use the value t as representing "the number of hours since 2 p.m." Since the liner was there at exactly 2 p.m. and is traveling 16 kph, the function is
N(t) = 16t
Now let's create the same function for how far west the tanker is from the spot. Since the tanker was there at 3 p.m. (t = 1 by the definition above), the function is slightly more complicated, and is
W(t) = 14(t-1)
The distance between the 2 ships is easy. Just use the pythagorean theorem. So
d(t) = sqrt(N(t)^2 + W(t)^2)
If you want the function for d() to be expanded, just substitute the other functions, so
d(t) = sqrt((16t)^2 + (14(t-1))^2)
d(t) = sqrt(256t^2 + (14t-14)^2)
d(t) = sqrt(256t^2 + (196t^2 - 392t + 196) )
d(t) = sqrt(452t^2 - 392t + 196)</span>
For this case we have the following inequality:

Solving for the numerator we have:

Solving for the denominator we have:

Therefore, the solution is given by:

The graph that shows this solution is the graphic number 3.
Answer:
option 3
Answer:
Please find solution in the picture attached
Step-by-step explanation:
Answer:
C (1,1) is another point on the line
Answer:
So, if all the light passes through a solution without any absorption, then absorbance is zero, and percent transmittance is 100%. If all the light is absorbed, then percent transmittance is zero, and absorption is infinite.
Absorbance is the inverse of transmittance so,
A = 1/T
Beer's law (sometimes called the Beer-Lambert law) states that the absorbance is proportional to the path length, b, through the sample and the concentration of the absorbing species, c:
A ∝ b · c
As Transmittance, 
% Transmittance, 
Absorbance,
Hence,
is the algebraic relation between absorbance and transmittance.