The answer is "C", "MW".
In the given problem, the place QMW and plane RMW. These planes intersect at MW, in which intersection is either a point, line or curve that an entity or entities both possess or is in contact with but if we see in Euclidean<span> geometry, the intersection of two planes is called a “line”. </span>In the plane we can understand that the common line for both plane QMW and plane RMW is MW.
Answer:
Step-by-step explanation:
<u>The range is the difference between the lowest and the highest values of the set:</u>
The answer is TRUE
=±22
x
=
±
2
x
2
Using the fact that 2=ln2
2
=
e
ln
2
:
=±ln22
x
=
±
e
x
ln
2
2
−ln22=±1
x
e
−
x
ln
2
2
=
±
1
−ln22−ln22=∓ln22
−
x
ln
2
2
e
−
x
ln
2
2
=
∓
ln
2
2
Here we can apply a function known as the Lambert W function. If =
x
e
x
=
a
, then =()
x
=
W
(
a
)
.
−ln22=(∓ln22)
−
x
ln
2
2
=
W
(
∓
ln
2
2
)
=−2(∓ln22)ln2
x
=
−
2
W
(
∓
ln
2
2
)
ln
2
For negative values of
x
, ()
W
(
x
)
has 2 real solutions for −−1<<0
−
e
−
1
<
x
<
0
.
−ln22
−
ln
2
2
satisfies that condition, so we have 3 real solutions overall. One real solution for the positive input, and 2 real solutions for the negative input.
I used python to calculate the values. The dps property is the level of decimal precision, because the mpmath library does arbitrary precision math. For the 3rd output line, the -1 parameter gives us the second real solution for small negative inputs. If you are interested in complex solutions, you can change that second parameter to other integer values. 0 is the default number for that parameter.


When

, you're left with

When

or

, you're left with

Adding the two equations together gives

, or

. Subtracting them gives

,

.
Now, you have



By just examining the leading and lagging (first and last) terms that would be obtained by expanding the right side, and matching these with the terms on the left side, you would see that

and

. These alone tell you that you must have

and

.
So the partial fraction decomposition is