Answer:
the density of indium is 7.2 g/cm^3
Explanation:
The computation of the density of indium is shown below:
Given that
Mass = 16.6 g
Volume = 48.6 c,^3 - 46.3cm^3 = 2.3 cm^3
Based on the above information
As we know that
Density = mass ÷ volume
So,
= 16.6g ÷ 2.3 cm^3
= 7.2 g/cm^3
hence, the density of indium is 7.2 g/cm^3
We simply applied the above formula so that the correct value could come
And, the same is to be considered
According to Doppler Effect, an observer at rest will perceive a shift in the wavelength or frequency of the radiation emitted by a source in movement.This shift is given by the formula:

where:

= observed wavelength

= wavelength at rest
v = speed of source (positive if towards the observer, negative if away from the observer)
c = speed of light
Therefore, we can solve for the observed wavelength:

Substituting the given data:

= 655.80 nm
Hence, the observed wavelength of the line would be
655.80 nm. Note that this value is smaller than the one at rest, which means that we have a blue-shift, as expected for an approaching source.
Answer:
The greatest force of gravity on the ball will occur at the point when the ball is near to hit the ground
Explanation:
We know that the earth's center attracts everything towards its center with an acceleration of 9.8 m/s² so it simply means that the change in velocity must occur to produce acceleration. When the ball comes towards the earth, its speed continuously increases and it is at maximum level when it is about to hit the ground so this is the point where gravitational force is maximum.
I hope this helps ^_^
Answer:
Explanation:
For an electric force, F the formula:
F = kQq/r^2
Given:
r2 = 1/2 × r1
F1 × r1 = k
F1 × r1 = F2 × r2
F2 = (F1 × r1^2)/(0.5 × r1)^2
= (F1 × r1^2)/0.25r1^2
= 4 × F1.