1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Semenov [28]
3 years ago
10

|a| if a>0 Please help!

Mathematics
2 answers:
Mariana [72]3 years ago
7 0

Answer:

1/a > 0

Step-by-step explanation:

JulijaS [17]3 years ago
6 0

Answer:

Step-by-step explanation:

the absolute value bars mean we ignore the sign of the variable

As (a) is always positive for a>0,   |a| = a

For contrast, If the range were a<0 where (a) is always negative, then |a| = -a

You might be interested in
Please give me an answer as fast as possible I need to finish this assignment.
TiliK225 [7]

Answer:

24

Step-by-step explanation:

I hope I'm right :)

5 0
4 years ago
14-16 and 17-20 <br>I need help figuring this out or answers.
Temka [501]

14 -16=-2 17-20=-3 it's just regular problems backwards

3 0
3 years ago
Which list is in descending order?
Alja [10]
The answer is B because if you convert all of them to decimals you get it in that order.
6 0
3 years ago
Read 2 more answers
A study was conducted to test whether a manufacturing process performed at a remote location can be established locally. Test de
zhenek [66]

Answer:

Step-by-step explanation:

Hello!

You have the information about voltage readings at an old and a new manufacturing location obtained remotely.

a, b and c in the attachment.

Histograms for a and c:

To construct a frequency histogram you have to first arrange the data for both locations in a frequency table. For this, I'm going to determine 5 class interval for each location. To do so you need to calculate the width of the intervals. First, you calculate the range of the variable and then you have to divide it by the number of intervals you want to do.

Old location: Range= 10,55-8,05= 2,5 → Class width: 2,5/5= 0,5

New Location: Range= 10,12-8,51= 1,61 → Class width: 1,61/5= 0,322

Starting from the minimum value you add the calculated width and create the intervals:

Old Location:

8,05-8,55

8,55-9,05

9,05-9,55

9,55-10,05

10,05-10,55

New Location

8,51-8,83

8,83-9,15

9,15-9,48

9,48-9,80

9,80-10,12

Stem and Leaf diagram for b:

To construct this diagram first I've ordered the data from leat to greatests. Then I've used the integer to form the stem 8,- 9.- and 10.- and the decimals are placed in the leafs of the diagram.

Comparing it to the histogram and stem and leaf diagram for the readings of the Old Location, the histogram stem, and leaf diagram show better where most of the readings lie.

d.

Comparing both histograms, it looks like the readings in the new location are more variable than the readings in the old location but more uniformly distributed. I would say that the readings in the new location are better than the readings in the old location.

e.

To calculate the mean you have to apply the following formula:

X[bar]= (∑xi'fi)/n

X[bar]OLD=(∑xi'fi)/n= (8.3*1+8.8*3+9.3*0+9.8*17+10.3*9)/30= 294/30= 9.8

X[bar]NEW=(∑xi'fi)/n= (8.67*6+8.99*2+9.315*7+9.64*8+9.96*7)/30= 282.045/30= 9.4015≅9.40

First you have to calculate the position of the median:

For both data sets the PosMe= 30/2=15

Now you arrange the data from least to highest and determine wich observation is in the 15th position:

Old Location

8,05 , 8,72 , 8,72 , 8,8 , 9,55 , 9,7 , 9,73 , 9,8 , 9,8 , 9,84 , 9,84 , 9,87 , 9,87 , 9,95 , 9,97 , 9,98 , 9,98 , 10 , 10,01 , 10,02 , 10,03 , 10,05 , 10,05 , 10,12 , 10,15 , 10,15 , 10,26 , 10,26 , 10,29 , 10,55

MeOLD= 9.97

New Location

8,51 , 8,65 , 8,68 , 8,78 , 8,82 , 8,82 , 8,83 , 9,14 , 9,19 , 9,27 , 9,35 , 9,36 , 9,37 , 9,39 , 9,43 , 9,48 , 9,49 , 9,54 , 9,6 , 9,63 , 9,64 , 9,7 , 9,75 , 9,85 , 10,01 , 10,03 , 10,05 , 10,09 , 10,1 , 10,12

MeNEW= 9.43

The mode is the observation with more absolute frequency.

To determine the mode on both data sets I'll use the followinf formula:

Md= Li + c [Δ₁/(Δ₁+Δ₂)]

Li= Lower bond of the interval with most absolute frequency (modal interval)

c= amplitude of the modal interval

Δ₁= absolute frequency of the modal interval minus abolute frequency of the previous interval

Δ₂= absolute frequency of the modal interval minus the absolute frequency of the next interval

Modal interval OLD

9,55-10,05

Δ₁= 17-0= 17

Δ₂= 17-9= 8

c= 0.5

Li= 9.55

MdOLD= 9.55 + 0.5*[17/(17+8)]= 9.89

Modal interval NEW

9,48-9,80

Δ₁= 8-7= 1

Δ₂= 8-7= 1

c= 0.32

Li= 9.48

MdNEW= 9.48+0.32*[1/(1+1)]= 9.64

f.

OLD

Mean 9.8

SE 0.45

X= 10.50

Z= (10.50-9.8)/0.45= 1.56

g.

NEW

Mean 9.4

SE 0.48

X=10.50

Z= (10.50-9.4)/0.48=2.29

h. The Z score for the reading 10.50 for the old location is less than the Z score for the reading 10.50 for the new location, this means that the reading is closer to the mean in the old location than in the new location.

The reading 10.50 is more unusual for the new location.

i. and k. Boxplots attached.

There are outliers for the readings in the old location, none in the readings for the new location.

j. To detect outliers using the Z- score you have to "standardize every value of the data set using the corresponding values of the mean and standard deviation. Observations that obtained a Z-score greater than 3 or less than -3 are outliers.

The data set for the new location has no outliers, To prove it I've calculated the Z-scores for the max and min values:

Min: Z=(8.51-9.4)/0.48= -1.85

Max: Z=(10.12-9.4)/0.48= 1.5

The records for the old location show, as seen in the boxplot, outliers:

To find them I'll start calculating values of Z from the bottom and the top of the list until getting a value Z≥-3 and Z≤3

Bottom:

1) 8,05 ⇒ Z=(8.05-9.8)/0.45= -3.89

2) 8,72 ⇒ Z= (8.72-9.8)/0.45= -2.4

Top

1) 10,55⇒ Z= (10.55-9.8)/0.45= 1.67

m. As mentioned before, the distribution for the new location seems to be more uniform and better distributed than the distribution for the old location. Both distributions are left-skewed, the distribution for the data of the old location is severely affected by the presence of outliers.

I hope this helps!

5 0
3 years ago
What is the value of x if h+3/x-3=12?
xxMikexx [17]

Answer:

x=12 is the answer.

7 0
3 years ago
Other questions:
  • A beetle is 1/5 inch wide and 2/5 inch long. How much greater is the beetle's length than its width?
    10·1 answer
  • M is the midpoint of LN. what is LM?
    14·2 answers
  • The function f is defined by f(x)=5x+k, where k is a constant. Find k, if the value of f at x=2 is equal to 14.
    6·2 answers
  • In this graph, the y-intercept of the line is( )
    8·1 answer
  • How is an easy way to solve proportions with variables on both sides
    14·1 answer
  • 10^-3 mm in inches??
    5·2 answers
  • There is plot behind Best Buy and Academy
    14·2 answers
  • The area of a regular hexagon circumscribed about a circle with radius 5 is __
    6·1 answer
  • Who was a ruler of ancient Egypt?
    5·2 answers
  • How do I do step by step
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!