1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
slamgirl [31]
3 years ago
7

Use the functions a(x) = 4x + 9 and b(x) = 3x − 5 to complete the function operations listed below.

Mathematics
1 answer:
iren2701 [21]3 years ago
4 0
A. (a + b)(x) =a(x)+b(x) =  4x + 9+<span> 3x − 5 = 7x - 4
B. </span>(a ⋅ b)(x)= a(x)*b(x) =(4x + 9)( 3x − 5 )= 12x²+27x-20x-45 = 12x² +7x -45
C.  a[b(x)] = 4(<span>3x − 5)</span> + 9 = 12x-20+9=12x-11
You might be interested in
-5x -2y= -9<br> 8x + 8y= 24
max2010maxim [7]

Answer:

x=5

y=-17

Step-by-step explanation:

basically what I did was:

1) I multiplied the first equation by 4 , solved for x

2) I used the value of x that i found and substituted in one of the equations to find y

3 0
3 years ago
Solve 2x2 - 6x = -8.
erma4kov [3.2K]

Answer:

x=2

Step-by-step explanation:

8 0
3 years ago
I only need help with 12 and please tell me how you figured it out
Mars2501 [29]
18/3=6
6•4=24 students in the class
8 0
4 years ago
Find the exact value, without a
alexira [117]

Answer:

-2 -\sqrt{3}

Step-by-step explanation:

<u><em>First consider numerator</em></u>

sin \frac{\frac{7\pi}{6}}{2} = sin \frac{7\pi}{12}= sin (\frac{\pi}{4} + \frac{\pi}{3})

Using the formula : sin (A + B) = sin A cos B + cos A sin B

sin  \frac{\pi}{4} = \frac{\sqrt{2} }{2}, \ cos  \frac{\pi}{4} = \frac{\sqrt{2} }{2}\\\\sin \frac{\pi}{3} = \frac{\sqrt{2} }{2}, \ cos \frac{\pi}{3} = \frac{1}{2}

sin(\frac{\pi}{4} + \frac{\pi}{3}) = sin \frac{\pi}{4}  \cdot cos  \frac{\pi}{3} + cos \frac{\pi}{4} \cdot sin \frac{\pi}{3}

                =\frac{\sqrt{2} }{2} \cdot \frac{1}{2} + \frac{\sqrt{2} }{2} \cdot \frac{\sqrt{3} }{2} \\\\= \frac{\sqrt{2} }{4} + \frac{\sqrt{6} }{4}\\\\=\frac{\sqrt{2} +\sqrt{6} }{4}

<u><em>Second consider denominator</em></u>

cos \frac{\frac{7\pi}{6}}{2} = cos \frac{7\pi}{12}= cos (\frac{\pi}{4} + \frac{\pi}{3})

Using the formula : cos (A + B) = cos A cos B - sin A sin B

sin  \frac{\pi}{4} = \frac{\sqrt{2} }{2}, \ cos  \frac{\pi}{4} = \frac{\sqrt{2} }{2}\\\\sin \frac{\pi}{3} = \frac{\sqrt{2} }{2}, \ cos \frac{\pi}{3} = \frac{1}{2}

cos(\frac{\pi}{4} + \frac{\pi}{3}) = cos \frac{\pi}{4}  \cdot cos  \frac{\pi}{3} -sin \frac{\pi}{4} \cdot sin \frac{\pi}{3}

=\frac{\sqrt{2} }{2} \cdot \frac{1}{2} - \frac{\sqrt{2} }{2} \cdot \frac{\sqrt{3} }{2}\\\\=\frac{\sqrt{2}}{4} -  \frac{\sqrt{6}}{4}\\\\= \frac{\sqrt{2} -\sqrt{6} }{4}

Therefore,

           tan \frac{7\pi}{12} = \frac{sin \frac{7\pi}{12}}{cos\frac{7\pi}{12}}

                     = \frac{\frac{\sqrt{2} +\sqrt{6} }{4}} {\frac{\sqrt{2} -\sqrt{6} }{4} }\\\\=\frac{\sqrt{2} +\sqrt{6} }{4} \times \frac{4 }{\sqrt{2} -\sqrt{6}}\\\\=\frac{\sqrt{2} +\sqrt{6} }{\sqrt{2} -\sqrt{6}}

Either we can stop here or Rationalize the denominator:

\frac{\sqrt{2} +\sqrt{6} }{\sqrt{2} -\sqrt{6}} \times \frac{\sqrt{2} +\sqrt{6} }{\sqrt{2} +\sqrt{6}} = \frac{(\sqrt{2} +\sqrt{6})^{2} }{(\sqrt{2})^2 -(\sqrt{6})^2} = \frac{2 + 6 +2\sqrt{12} }{2-6} = \frac{8+2\sqrt{12} }{-4} = \frac{8+ 4\sqrt{3} }{-4} = -2-\sqrt{3}

3 0
3 years ago
What is the surface area of the rectangular pyramid below? 13,13,13
NARA [144]

Answer:

1,014

Step-by-step explanation:

Assuming those 13’s represent the Length and Width of the sides of the prism, the equation would be

13x13x6 (6 sides)

=1014

5 0
4 years ago
Other questions:
  • Simplify this expression: cos t(sec t − cos t)
    11·1 answer
  • In the same way that other functions can be combined, a series of transformations can be combined into a single function. For ex
    15·2 answers
  • Help me please anyone I need help asap
    5·1 answer
  • a random sample of 510 high school students has a normal distribution. The sample mean average ACT exam score was 21 with a 3.2
    8·1 answer
  • Mrs. Johnson’s class sold cookies for $2.50 each and Mr. Smith’s class sold popcorn for $1.50 each. Together, the classes sold 5
    13·1 answer
  • FIRST CORRECT ANSWER GETS BRAINLIEST!!! AND TEN POINTS!!!
    13·1 answer
  • A hexagon has two congruent sides that
    10·1 answer
  • Points A,B and C are collinear and point B lies between A and C. If AB=15 and BC=21, what is AC?
    13·1 answer
  • I would like some help please
    8·1 answer
  • Find the height of a with a cone with a diameter of 22 m whose volume is 113 m3.
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!