Answer:
All three.
Step-by-step explanation:
All three of these ratios are equivalent to 15:5. Here's how:
Let's look at the first ratio, 9:3. Did you notice something common? 3 x 3 = 9. 9/3 = 3. 5 x 3 = 15. 15/3 = 5. Both of these numbers are divisible by 3, so these ratios are equivalent.
Second. 6:2. 2 x 3 = 6. 6/3 = 2. 5 x 3 = 15. 15/3 = 5. See the similarity? The same applies to the next problem, number three, although it does slightly differentiate.
Third, 3:1. See, here, since the ratio is smaller than the problem, we can't multiply, since this ratio is smaller than the original number. But, it's still the same thing. A ratio is a number that compares a value to another value. This means that 3:1 is 3 compared to one. Now, let me clarify. 15:5. 3:1. These are the exact same values, except they are just written in a different form, and simplified. Since 5 x 3 = 15, we know that we can divide 15 evenly by 5, which makes it 3, and divide 5 evenly by 5, which equals one. So here we have our answer for the third problem. 5:1.
Ratios are basically division, except simplified. Every single ratio problem works this way. Once you get the hang of it, it's immensely easy. Hope this helped!
Answer:
he can travel 495 km in 9 hr
distance covered in one hr = 275\5
55
distance covered in 9 hrs =495
Answer:
x^4 +8/7x^3 + 6x +1
Step-by-step explanation:
8/7x^3 + x^4 + 6x +1
Standard from is from the largest power to the smallest power
x^4 +8/7x^3 + 6x +1
Answer:
Step-by-step explanation:
Use FOIL method
(2 - 7x)(-x + 2) = 2*(-x) + 2*2 + (-7x)*(-x) + (-7x)*2
= -2x + 4 + 7x² - 14x {Combine like terms}
= 7x² - 14x - 2x + 4
= 7x² - 16x + 4
x²(2-7x)(-x + 2)= x² (7x² - 16x + 4)
= x²*7x² - 16x * x² + 4x²

Check the picture below.
so the <u>triangular prism</u> is really 3 rectangles and two triangles stacked up to each other at the edges, so if we simply get the area of each figure individually and sum them up, that's the area of the prism.
let's notice, the triangles have a base of 2.4 and a height/altitude of 1.
![\bf \stackrel{\textit{2 triangles's area}}{2\left[ \cfrac{1}{2}(2.4)(1) \right]}~~+~~\stackrel{\textit{right rectangle}}{(2\cdot 1.5)}~~+~~\stackrel{\textit{left rectangle}}{(2\cdot 1.7)}~~+~~\stackrel{\textit{bottom rectangle}}{(2\cdot 2.4)} \\\\\\ 2.4+3+3.4+4.8\implies 5.4+8.2\implies 13.6](https://tex.z-dn.net/?f=%5Cbf%20%5Cstackrel%7B%5Ctextit%7B2%20triangles%27s%20area%7D%7D%7B2%5Cleft%5B%20%5Ccfrac%7B1%7D%7B2%7D%282.4%29%281%29%20%5Cright%5D%7D~~%2B~~%5Cstackrel%7B%5Ctextit%7Bright%20rectangle%7D%7D%7B%282%5Ccdot%201.5%29%7D~~%2B~~%5Cstackrel%7B%5Ctextit%7Bleft%20rectangle%7D%7D%7B%282%5Ccdot%201.7%29%7D~~%2B~~%5Cstackrel%7B%5Ctextit%7Bbottom%20rectangle%7D%7D%7B%282%5Ccdot%202.4%29%7D%20%5C%5C%5C%5C%5C%5C%202.4%2B3%2B3.4%2B4.8%5Cimplies%205.4%2B8.2%5Cimplies%2013.6)