Answer:
One-half of the daughters of an affected man would have this condition.
Explanation:
Each daughter born to a woman that is positive for a dystrophin mutation on one of her two X chromosomes possess a 50 percent likelihood of possessing the mutation and also becoming a carrier. Carriers at times do not show the disease symptoms but may give birth to a child that has the mutation or the disease condition. DMD carriers do have a higher chance of cardiomyopathy.
A man with DMD cannot transfer the affected gene to his sons since he passes to his son a Y chromosome, not the X chromosome. But he will definately transfer it to his daughters, since each daughter possess her father’s only X chromosome resulting in the daughters being carriers.
Hence, One-half of the daughters of an affected father and a carrier mother could have this condition.
It is last time be you’re correct
Answer:
B. At what rate do the mitochondria of the cell need to convert glucose to usable energy molecules to meet the high energy needs of the cell?
Explanation:
Organelles are specific in their functioning and hence, each organelle contributes its own quota to the cell's proper functioning. According to the question, a muscle tissue is being worked on to determine the effect of a missing or damaged organelle on its cell.
Mitochondria are organelles found in all eukaryotic living cells. They are the organelles responsible for the synthesis of ATP (energy) used by the cell as a result of the glucose that gets converted in them during cellular respiration.
Therefore, to determine if the muscle cells are functioning properly, the question that: At what rate do the mitochondria of the cell need to convert glucose to usable energy molecules to meet the high energy needs of the cell? should be asked.
Note that, Chloroplast and cell wall are not found in muscle cells, which is an animal cell. Likewise, ribosomes are not organelles for synthesis of glucose.
I think they discovered chromosomes in DNA so that backed up his Idea
<span />