Answer:
0.0082 = 0.82% probability that he will pass
Step-by-step explanation:
For each question, there are only two possible outcomes. Either the students guesses the correct answer, or he guesses the wrong answer. The probability of guessing the correct answer for a question is independent of other questions. So we use the binomial probability distribution to solve this question.
Binomial probability distribution
The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.

In which
is the number of different combinations of x objects from a set of n elements, given by the following formula.

And p is the probability of X happening.
In this problem we have that:
.
If the student makes knowledgeable guesses, what is the probability that he will pass?
He needs to guess at least 9 answers correctly. So









0.0082 = 0.82% probability that he will pass
Answer:
F = 48
Step-by-step explanation:
F= 8/5 (c) + 40
Let c=5
F = 8/5 * 5 +40
= 8 + 40
= 48
The y-intercept is (0, -8)
if you set the equation to slope intercept format you get
y=-2x-8