The correct solution in simplifying the given mathematical expression is
.
<u>Given the following data:</u>
To determine the correct solution in simplifying the given mathematical expression:
In this scenario, you're required to simplify the given mathematical expression in its simplest form.
<h3>How to simplify a
mathematical expression.</h3>
<u>Step 1:</u> We would apply the basic law of division for fractions.
![(-5^{-2}x^3)^{-1}=(\frac{-1}{5^2} \times x^3)^{-1}\\\\](https://tex.z-dn.net/?f=%28-5%5E%7B-2%7Dx%5E3%29%5E%7B-1%7D%3D%28%5Cfrac%7B-1%7D%7B5%5E2%7D%20%5Ctimes%20x%5E3%29%5E%7B-1%7D%5C%5C%5C%5C)
<u>Step 2:</u> We would expand the bracket.
![(\frac{-1}{5^2} \times x^3)^{-1}=(\frac{-x^3}{5^2} )^{-1}\\\\(\frac{-x^3}{5^2} )^{-1}=(\frac{-x^3}{25} )^{-1}\\\\](https://tex.z-dn.net/?f=%28%5Cfrac%7B-1%7D%7B5%5E2%7D%20%5Ctimes%20x%5E3%29%5E%7B-1%7D%3D%28%5Cfrac%7B-x%5E3%7D%7B5%5E2%7D%20%29%5E%7B-1%7D%5C%5C%5C%5C%28%5Cfrac%7B-x%5E3%7D%7B5%5E2%7D%20%29%5E%7B-1%7D%3D%28%5Cfrac%7B-x%5E3%7D%7B25%7D%20%29%5E%7B-1%7D%5C%5C%5C%5C)
<u>Step 3:</u> We would apply the inverse of fraction.
![(\frac{-x^3}{25} )^{-1}= -\frac{25}{x^3}](https://tex.z-dn.net/?f=%28%5Cfrac%7B-x%5E3%7D%7B25%7D%20%29%5E%7B-1%7D%3D%20-%5Cfrac%7B25%7D%7Bx%5E3%7D)
Read more on law of division here: brainly.com/question/19660239