Answer:
3
Step-by-step explanation:
Calculate the distance using the distance formula
d = 
with (x₁, y₁ ) = (- 9, 8) and (x₂, y₂ ) = (- 3, - 1)
d = 
= 
= 
= 
= 
= 
=
× 
= 3
For part A: two transformations will be used. First we will translate ABCD down 3 units: or the notation version for all (x,y) → (x, y - 3) so our new coordinates of ABCD will be:
A(-4,1)
B(-2,-1)
C(-2,-4)
D(-4,-2)
The second transformation will be to reflect across the 'y' axis. Or, the specific notation would be: for all (x,y) → (-x, y) New coordinates for A'B'C'D'
A'(4,1)
B'(2,-1)
C'(2,-4)
D'(4,-2)
Part B: The two figures are congruent.. We can see this a couple of different ways.
- first after performing the two transformations above, you will see that the original figure perfectly fits on top of the image.. exactly the same shape and size.
- alternatively, you can see that the original and image are both parallelograms with the same dimensions.
Answer:
31 nickels and 29 dimes
Step-by-step explanation:
Answer:

Step-by-step explanation:
Well we can start by seeing if the parabola is the same width by comparing it to its parent function ( y = x^2 )
In y = x^2 the 2nd lowest point is just up 1 and right 1 away from the vertex.
This is not true for our parabola.
So we can widen it by to the desidered width by making the x^2 into a .5x^2.
So far we’ve got y = .5x^2
Now the parabola y intercept is at -5.
So we can add a -5 into the equation making it.
y = .5x^2 - 5
Now for the x value.
So we can find the x value by seeing how far away the parabola is from from the y axis.
So the x value is -2x.
So the full equation is 
Look at the image below to compare.