Answer:
Step-by-step explanation:
An x value of 0 can only be plugged into the equation that has a domain that includes 0. The first function's domain is between -2 and -4, so 0 is not included in that domain. In the third function, the domain is between 1 and 3, so 0 is not included in that domain, either. The middle function's domain does include 0 (0 falls between -2 and 1) so we can only evaluate this function at an x value of 0.
g(0) = -0 - 1 so
g(0) = -1
Answer:
Step-by-step explanation:
Solutions, zeros, and roots of a polynomial are all the same exact thing and can be used interchangeably. When you factor a polynomial, you solve for x which are the solutions of the polynomial. Since, when you factor a polynomial, you do so by setting the polynomial equal to 0, by definition of x-intercept, you are finding the zeros (don't forget that x-intercepts exist where y is equal to 0). There's the correlation between zeros and solutions.
Since factoring and distributing "undo" each other (or are opposites), if you factor to find the zeros, you can distribute them back out to get back to the polynomial you started with. Each zero or solution is the x value when y = 0. For example, if a solution to a polynomial is x = 3, since that is a zero of the polynomial, we can set that statement equal to 0: x - 3 = 0. What we have then is a binomial factor of the polynomial in the form (x - 3). These binomial factors found from the solutions/zeros of the polynomial FOIL out to give you back the polynomial equation.
We're told that



where the last fact is due to the law of total probability:



so that
and
are complementary.
By definition of conditional probability, we have



We make use of the addition rule and complementary probabilities to rewrite this as


![\implies P(B)-[1-P(A\cup B)^C]=[1-P(B)]-P(A\cup B^C)](https://tex.z-dn.net/?f=%5Cimplies%20P%28B%29-%5B1-P%28A%5Ccup%20B%29%5EC%5D%3D%5B1-P%28B%29%5D-P%28A%5Ccup%20B%5EC%29)
![\implies2P(B)=2-[P(A\cup B)^C+P(A\cup B^C)]](https://tex.z-dn.net/?f=%5Cimplies2P%28B%29%3D2-%5BP%28A%5Ccup%20B%29%5EC%2BP%28A%5Ccup%20B%5EC%29%5D)
![\implies2P(B)=[1-P(A\cup B)^C]+[1-P(A\cup B^C)]](https://tex.z-dn.net/?f=%5Cimplies2P%28B%29%3D%5B1-P%28A%5Ccup%20B%29%5EC%5D%2B%5B1-P%28A%5Ccup%20B%5EC%29%5D)


By the law of total probability,


and substituting this into
gives
![2P(B)=P(A\cup B)+[P(B)-P(A\cap B)]](https://tex.z-dn.net/?f=2P%28B%29%3DP%28A%5Ccup%20B%29%2B%5BP%28B%29-P%28A%5Ccap%20B%29%5D)


Answer:
26 m
Step-by-step explanation:
Perimeter = 92 m
Length = 8 m more than width
Width: 20 m
Therefore,
<h2>length=26 m</h2>