Answer:
Option D) h(x), f(x), g(x)
Step-by-step explanation:
we know that
The axis of symmetry of a vertical parabola is equal to the x-coordinate of the vertex of the parabola
Part 1) we have

This is a vertical parabola open upward
The vertex is a minimum The vertex is the point (0,-1)
The x-coordinate of the vertex is 0
so
The axis of symmetry is x=0
Part 2) we have

This is a vertical parabola open upward
The vertex is a minimum
Convert the equation into vertex form





The vertex is the point (4,-11)
The x-coordinate of the vertex is 4
so
The axis of symmetry is x=4
Part 3) we have

This is a vertical parabola open downward
The vertex is a maximum
Convert the equation into vertex form





The vertex is the point (-2,13)
The x-coordinate of the vertex is -2
so
The axis of symmetry is x=-2
Part 4) Rank their axis of symmetry from least to greatest
1) h(x) -----> axis of symmetry -2
2) f(x) -----> axis of symmetry 0
3) g(x) -----> axis of symmetry 4
so
h(x),f(x),g(x)