1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Dmitry [639]
3 years ago
13

6 + -3 = 3t + 6 please help we find the solutions

Mathematics
2 answers:
Eva8 [605]3 years ago
7 0

Answer:

<h2>t=-1</h2>

Basic fact:

<em> a + and a - make a -</em>

Step-by-step explanation:

6 + -3 = 3t + 6

6+-3=6-3

6-3=3

3= 3t+6

-6

-3=3t

divide by 3

-1=t

DiKsa [7]3 years ago
6 0

Answer:

t = -1

Step-by-step explanation:

6 + -3 = 3t + 6

Step One : Subtract 6 from both sides.

6 + -3 - 6 = 3t + 6 - 6

Step Two : Simplify.

3t = -3

Divide both sides by 3.

-3 divided by 3 is -1.

Therefore t is -1. Hope this helps, please mark brainliest if possible!

You might be interested in
10. What is the probability of selecting a green marble out of a bag that has 4 red marbles, 3 blue marbles, 2 green marbles, an
umka2103 [35]

Answer:

B.

Step-by-step explanation:

8 0
4 years ago
8x^3+2x^2-8 estimate the relative maxima and relative minima
DIA [1.3K]
Compute the derivative:

\dfrac{\mathrm d}{\mathrm dx}\bigg[8x^3+2x^2-8\bigg]=24x^2+4x

Set equal to zero and find the critical points:

24x^2+4x=4x(6x+1)=0\implies x=0,-\dfrac16

Compute the second derivative at the critical points to determine concavity. If the second derivative is positive, the function is concave upward at that point, so the function attains a minimum at the critical point. If negative, the critical point is the site of a maximum.

\dfrac{\mathrm d^2}{\mathrm dx^2}\bigg[8x^3+2x^2-8\bigg]=\dfrac{\mathrm d}{\mathrm dx}\bigg[24x^2+4x\bigg]=48x+4

At x=0, the second derivative takes on the value of 4, so the function is concave upward, so the function has a minimum there of -8.

At x=-\dfrac16, the second derivative is -4, so the function is concave downward and has a maximum there of -\dfrac{431}{54}.
6 0
3 years ago
Math need helppppp pleaseeee​
-BARSIC- [3]

Step-by-step explanation:

it's not specific enough kid

8 0
3 years ago
Find the function y = f(t) passing through the point (0, 18) with the given first derivative.
monitta

Answer:

\displaystyle y = \frac{t^2}{16} + 18

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right  

Equality Properties

  • Multiplication Property of Equality
  • Division Property of Equality
  • Addition Property of Equality
  • Subtraction Property of Equality

<u>Algebra I</u>

  • Functions
  • Function Notation
  • Coordinates (x, y)

<u>Calculus</u>

Derivatives

Derivative Notation

Antiderivatives - Integrals

Integration Constant C

Integration Rule [Reverse Power Rule]:                                                                   \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Property [Multiplied Constant]:                                                             \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

Point (0, 18)

\displaystyle \frac{dy}{dt} = \frac{1}{8} t

<u>Step 2: Find General Solution</u>

<em>Use integration</em>

  1. [Derivative] Rewrite:                                                                                         \displaystyle dy = \frac{1}{8} t\ dt
  2. [Equality Property] Integrate both sides:                                                        \displaystyle \int dy = \int {\frac{1}{8} t} \, dt
  3. [Left Integral] Integrate [Integration Rule - Reverse Power Rule]:                 \displaystyle y = \int {\frac{1}{8} t} \, dt
  4. [Right Integral] Rewrite [Integration Property - Multiplied Constant]:           \displaystyle y = \frac{1}{8}\int {t} \, dt
  5. [Right Integral] Integrate [Integration Rule - Reverse Power Rule]:              \displaystyle y = \frac{1}{8}(\frac{t^2}{2}) + C
  6. Multiply:                                                                                                             \displaystyle y = \frac{t^2}{16} + C

<u>Step 3: Find Particular Solution</u>

  1. Substitute in point [Function]:                                                                         \displaystyle 18 = \frac{0^2}{16} + C
  2. Simplify:                                                                                                             \displaystyle 18 = 0 + C
  3. Add:                                                                                                                   \displaystyle 18 = C
  4. Rewrite:                                                                                                             \displaystyle C = 18
  5. Substitute in <em>C</em> [Function]:                                                                                \displaystyle y = \frac{t^2}{16} + 18

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Integration

Book: College Calculus 10e

4 0
3 years ago
Help out due this week
gladu [14]

Answer:

i dont even know what congruent means

Step-by-step explanation:

step 1 throw your hands up then point them to the floor!

step 2 here is what to do now get down on all fours!

step 3 now bounce around its easy follow me!

step 4 go crazy now and beep beep like a sheep

5 0
3 years ago
Other questions:
  • I spent $3 for every $8 saved. In all, I saved $200. How much more money did I save than spend?
    13·2 answers
  • Please answer this and I’ll make you Brainly real fast
    6·2 answers
  • For large parties, a restaurant adds a 15% service charge to the bill. how much would be added to a bill of $638.40?
    6·2 answers
  • Equation with a solution of x=20
    11·1 answer
  • Which expression is equivalent to 2r + 7r?
    12·1 answer
  • 3y-2x=6 find the tangent y​
    10·1 answer
  • Write down inequalities,that are satisfied by these sets of integers between -10 and 10
    8·1 answer
  • An expression is shown below. Which expression is equivalent to the expression shown?
    13·1 answer
  • At a summer camp, there are 40 boys out of 70 campers. What is this ratio written as a fraction in simplest form?
    10·2 answers
  • Can someone answer this !
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!