1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Fed [463]
2 years ago
10

Please give a real answer! I will give brainliest!

Mathematics
1 answer:
scoundrel [369]2 years ago
3 0

Answer:

{(3, 5), (2, 5), (3,8)}

Step-by-step explanation:

separate the x's & y's & put them in separate brackets

You might be interested in
Y+4x=10x-6 solve for x
7nadin3 [17]

Answer:

(y-6)/6 = x

Step-by-step explanation:

y+4x=10x-6

Subtract 4x from each side

y+4x-4x=10x-4x-6

y = 6x-6

Add 6 to each side

y +6 = 6x-6+6

y+6 = 6x

Divide by 6

(y-6)/6 = 6x/6

(y-6)/6 = x



8 0
3 years ago
Read 2 more answers
Manuel noticed that his cellphone bill reflected a monthly fee of
Tomtit [17]

Answer: (total amount paid - $40) / 0.05

Step-by-step explanation:

Given the following :

Monthly fee = $40

Additional fee = $0.05 per minute on phone

Given the the amount paid for the month is available, number of minutes he was on phone can be determined thus :

Total amount to be paid = monthly fee + additional fee

Additional fee = $0.05 × n

Where n = number of minutes on phone

Hence,

Total amount paid = $40 + $0.05n

If the amount paid is known, the number of minutes on phone can be calculated thus;

(Total amount paid - monthly fee) = $0.05n

n = (Total amount paid - monthly fee) / fee per minute on phone

(total amount paid - $40) / 0.05

3 0
3 years ago
Increase £14187.13 by 14.5%
zhenek [66]

Answer:

16,244.26

Step-by-step explanation:

14,187.13 + (14.5% × 14,187.13) =

14,187.13 + 14.5% × 14,187.13 =

(1 + 14.5%) × 14,187.13 =

(100% + 14.5%) × 14,187.13 =

114.5% × 14,187.13 =

114.5 ÷ 100 × 14,187.13 =

114.5 × 14,187.13 ÷ 100 =

1,624,426.385 ÷ 100 =

16,244.26385 ≈

5 0
3 years ago
Read 2 more answers
HELP ASAP!!!
Umnica [9.8K]
Rearrange:

Rearrange the equation by subtracting what is to the right of the equal sign from both sides of the equation : 

           (a)/(a^2-16)+(2/(a-4))-(2/(a+4))=0 

Simplify ————— a + 4 <span>Equation at the end of step  1  :</span><span> a 2 2 (—————————+—————)-——— = 0 ((a2)-16) (a-4) a+4 </span><span>Step  2  :</span> 2 Simplify ————— a - 4 <span>Equation at the end of step  2  :</span><span> a 2 2 (—————————+———)-——— = 0 ((a2)-16) a-4 a+4 </span><span>Step  3  :</span><span> a Simplify ——————— a2 - 16 </span>Trying to factor as a Difference of Squares :

<span> 3.1 </span>     Factoring: <span> a2 - 16</span> 

Theory : A difference of two perfect squares, <span> A2 - B2  </span>can be factored into <span> (A+B) • (A-B)

</span>Proof :<span>  (A+B) • (A-B) =
         A2 - AB + BA - B2 =
         A2 <span>- AB + AB </span>- B2 = 
        <span> A2 - B2</span>

</span>Note : <span> <span>AB = BA </span></span>is the commutative property of multiplication. 

Note : <span> <span>- AB + AB </span></span>equals zero and is therefore eliminated from the expression.

Check : 16 is the square of 4
Check : <span> a2  </span>is the square of <span> a1 </span>

Factorization is :       (a + 4)  •  (a - 4) 

<span>Equation at the end of step  3  :</span> a 2 2 (————————————————— + —————) - ————— = 0 (a + 4) • (a - 4) a - 4 a + 4 <span>Step  4  :</span>Calculating the Least Common Multiple :

<span> 4.1 </span>   Find the Least Common Multiple 

      The left denominator is :      <span> (a+4) •</span> (a-4) 

      The right denominator is :      <span> a-4 </span>

<span><span>                  Number of times each Algebraic Factor
            appears in the factorization of:</span><span><span><span>    Algebraic    
    Factor    </span><span> Left 
 Denominator </span><span> Right 
 Denominator </span><span> L.C.M = Max 
 {Left,Right} </span></span><span><span> a+4 </span>101</span><span><span> a-4 </span>111</span></span></span>


      Least Common Multiple: 
      (a+4) • (a-4) 

Calculating Multipliers :

<span> 4.2 </span>   Calculate multipliers for the two fractions 


    Denote the Least Common Multiple by  L.C.M 
    Denote the Left Multiplier by  Left_M 
    Denote the Right Multiplier by  Right_M 
    Denote the Left Deniminator by  L_Deno 
    Denote the Right Multiplier by  R_Deno 

   Left_M = L.C.M / L_Deno = 1

   Right_M = L.C.M / R_Deno = a+4

Making Equivalent Fractions :

<span> 4.3 </span>     Rewrite the two fractions into<span> equivalent fractions</span>

Two fractions are called <span>equivalent </span>if they have the<span> same numeric value.</span>

For example :  1/2   and  2/4  are equivalent, <span> y/(y+1)2  </span> and <span> (y2+y)/(y+1)3  </span>are equivalent as well. 

To calculate equivalent fraction , multiply the <span>Numerator </span>of each fraction, by its respective Multiplier.

<span> L. Mult. • L. Num. a —————————————————— = ————————————— L.C.M (a+4) • (a-4) R. Mult. • R. Num. 2 • (a+4) —————————————————— = ————————————— L.C.M (a+4) • (a-4) </span>Adding fractions that have a common denominator :

<span> 4.4 </span>      Adding up the two equivalent fractions 
Add the two equivalent fractions which now have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

a + 2 • (a+4) 3a + 8 ————————————— = ————————————————— (a+4) • (a-4) (a + 4) • (a - 4) <span>Equation at the end of step  4  :</span> (3a + 8) 2 ————————————————— - ————— = 0 (a + 4) • (a - 4) a + 4 <span>Step  5  :</span>Calculating the Least Common Multiple :

<span> 5.1 </span>   Find the Least Common Multiple 

      The left denominator is :      <span> (a+4) •</span> (a-4) 

      The right denominator is :      <span> a+4 </span>

<span><span>                  Number of times each Algebraic Factor
            appears in the factorization of:</span><span><span><span>    Algebraic    
    Factor    </span><span> Left 
 Denominator </span><span> Right 
 Denominator </span><span> L.C.M = Max 
 {Left,Right} </span></span><span><span> a+4 </span>111</span><span><span> a-4 </span>101</span></span></span>


      Least Common Multiple: 
      (a+4) • (a-4) 

Calculating Multipliers :

<span> 5.2 </span>   Calculate multipliers for the two fractions 


    Denote the Least Common Multiple by  L.C.M 
    Denote the Left Multiplier by  Left_M 
    Denote the Right Multiplier by  Right_M 
    Denote the Left Deniminator by  L_Deno 
    Denote the Right Multiplier by  R_Deno 

   Left_M = L.C.M / L_Deno = 1

   Right_M = L.C.M / R_Deno = a-4

Making Equivalent Fractions :

<span> 5.3 </span>     Rewrite the two fractions into<span> equivalent fractions</span>

<span> L. Mult. • L. Num. (3a+8) —————————————————— = ————————————— L.C.M (a+4) • (a-4) R. Mult. • R. Num. 2 • (a-4) —————————————————— = ————————————— L.C.M (a+4) • (a-4) </span>Adding fractions that have a common denominator :

<span> 5.4 </span>      Adding up the two equivalent fractions 

(3a+8) - (2 • (a-4)) a + 16 ———————————————————— = ————————————————— (a+4) • (a-4) (a + 4) • (a - 4) <span>Equation at the end of step  5  :</span> a + 16 ————————————————— = 0 (a + 4) • (a - 4) <span>Step  6  :</span>When a fraction equals zero :<span><span> 6.1 </span>   When a fraction equals zero ...</span>

Where a fraction equals zero, its numerator, the part which is above the fraction line, must equal zero.

Now,to get rid of the <span>denominator, </span>Tiger multiplys both sides of the equation by the denominator.

Here's how:

a+16 ——————————— • (a+4)•(a-4) = 0 • (a+4)•(a-4) (a+4)•(a-4)

Now, on the left hand side, the <span> (a+4) •</span> (a-4)  cancels out the denominator, while, on the right hand side, zero times anything is still zero.

The equation now takes the shape :
   a+16  = 0

Solving a Single Variable Equation :

<span> 6.2 </span>     Solve  :    a+16 = 0<span> 

 </span>Subtract  16  from both sides of the equation :<span> 
 </span>                     a = -16 

One solution was found :

                  <span> a = -16</span>

4 0
3 years ago
If AD=6 and AB=24, find AC
ruslelena [56]
When a perpendicular is dropped from the right-angle (C) to the opposite side AB, the metric relations apply:
BD*BA=a^2 ..........................(1)
AD*AB=b^2...........................(2)
BD*DA=DC^2........................(3)

Given AD=6, AB=24, using metric relation (2) above, we have
b^2=6*24=144
=>
b=sqrt(144)=12

By the way, we conclude that this is a 30-60-90 triangle because b/AB=(1/2)=sin(B) => B=30 degrees.

Answer: b=12
6 0
3 years ago
Other questions:
  • Use the distributive property to create an equivalent expression to 42 + 6x
    11·2 answers
  • Which problem solving strategy would be best to solve this problem?Four people are in line at the movie theater. Jennifer is ahe
    7·2 answers
  • You work for a marketing firm that has a large client in the automobile industry. You have been asked to estimate the proportion
    14·1 answer
  • Tim lost 1/8 of his marbles. If he had 56 marbles, how many did he lose?
    5·2 answers
  • 15 points Help asap thanks so much
    12·1 answer
  • If 4^(3x-2)=4^(x+1), then x=
    7·1 answer
  • Select the correct answer how many solutions for x dose the following equation have 2(x+4)-1=2x+7
    13·1 answer
  • arshad's father bought x sweets .(x-4)were eaten by children and 20 were left.how many sweets did his father bring
    8·2 answers
  • Determine the unknown angle measurements in the figure
    9·1 answer
  • Which expression represents the following word sentence?
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!