Answer:
The vertex for the function f(x) = 3(x – 2)2 + 4 is at (2, 4).
Step-by-step explanation:
Find the vertex for f(x) = 3 (x - 2)^2 + 4
f(x) = 3 (x - 2)^2 + 4 can also be written as:
y = 3 (x - 2)^2 + 4
To find critical points, first compute f'(x):
d/(dx)(3 (x - 2)^2 + 4) = 6 (x - 2):
f'(x) = 6 (x - 2)
Solve 6 (x - 2) = 0
6x - 12 = 0
6x = 12
x = 2
iI you substitute x = 2 in 3 (x - 2)^2 + 4 then you get:
y = 3 (x - 2)^2 + 4
x = 2
y = 3 (2 - 2)^2 + 4
y = 3 (0)^2 + 4
y = 3 (0) + 4
y = 4
Answer: The vertex for the function f(x) = 3(x – 2)2 + 4 is at ( 2, 4 ).
Answer:
it is a invalid equation
Step-by-step explanation:
20 is not equal to 8
The percent error is by 12%
<span>The percent error is calculated by subracting the actual weight from the estimated weight and then dividing it by the actual value and multiplying it by 100% in absolute value(Which means to remove any negative sign) </span>
The coordinates of the point of intersection are read from the graph as ...
(3, 5).
Answer:
1-51
2-18
3-123
4-39
Step-by-step explanation: