B. Both processes form woven bone.
Explanation:
Bone growth and development is mainly characterized by bone ossification processes taking place through the two main osteogenic pathways – intramembranous and endochondral ossification.
The woven bones are the primary immature bones formed by both these ossification processes from the bone cells (osteoclasts, osteocytes, osteoblast) and calcified bone matrix. These woven cells later developed into the mature secondary bones or the lamellar bones – spongy (cancellous) or compact (dense cortical) bones.
Intramembranous ossification takes place mesenchymal sheets of connective tissues and produces soft spongy bones.
Endochondral ossification results in replacement of hyaline cartilage to form the long bones.
Answer:
Homogeneous mixture
Explanation:
Salt and water have only one face
Fossils in upper were younger than fossils in lower levels. Hope this helps!
Answer:
Climate change is rapidly becoming known as a tangible issue that must be addressed to avoid major environmental consequences in the future. Recent change in public opinion has been caused by the physical signs of climate change–melting glaciers, rising sea levels, more severe storm and drought events, and hotter average global temperatures annually. Transportation is a major contributor of carbon dioxide (CO2) and other greenhouse gas emissions from human activity, accounting for approximately 14 percent of total anthropogenic emissions globally and about 27 percent in the U.S.
Fortunately, transportation technologies and strategies are emerging that can help to meet the climate challenge. These include automotive and fuel technologies, intelligent transportation systems (ITS), and mobility management strategies that can reduce the demand for private vehicles. While the climate change benefits of innovative engine and vehicle technologies are relatively well understood, there are fewer studies available on the energy and emission impacts of ITS and mobility management strategies. In the future, ITS and mobility management will likely play a greater role in reducing fuel consumption. Studies are often based on simulation models, scenario analysis, and limited deployment experience. Thus, more research is needed to quantify potential impacts. Of the nine ITS technologies examined, traffic signal control, electronic toll collection, bus rapid transit, and traveler information have been deployed more widely and demonstrated positive impacts (but often on a limited basis). Mobility management approaches that have established the greatest CO2 reduction potential, to date, include road pricing policies (congestion and cordon) and carsharing (short-term auto access). Other approaches have also indicated CO2 reduction potential including: low-speed modes, integrated regional smart cards, park-and-ride facilities, parking cash out, smart growth, telecommuting, and carpooling.
Explanation: