Answer:
-5, multiplicity 3; +9, multiplicity 2; -1
Step-by-step explanation:
The roots of f(x) are those values of x that make the factors be zero. For a factor of x-a, the root is x=a, because a-a=0. If the factor appears n times, then the root has multiplicity n.
f(x) = (x+5)^3(x-9)^2(x+1) has roots ...
- -5 with multiplicity 3
- +9 with multiplicity 2
- -1
<h2>
<em><u>My</u></em><em><u> </u></em><em><u>equation</u></em><em><u> </u></em></h2>
<em>f</em><em>(</em><em>x</em><em>=</em><em>x</em><em>^</em><em>2</em><em> </em><em>is</em><em> </em><em>30</em><em> </em><em>and</em><em> </em><em>g</em><em>(</em><em>x</em><em>)</em><em> </em><em>=</em><em>4 1</em><em> </em><em> </em><em>is</em><em> </em><em>50</em><em>.</em><em>1</em>
<em>Hope</em><em> </em><em>it</em><em> </em><em>helps</em><em> </em><em>#brainliestbunch</em><em> </em><em>=</em><em>)</em><em> </em>
There are 2 order pairs there (6,-4),(-2,4)
find the midpoint using the formula
(x1+x2)/2 , (y1+y2)/2
x=6 and -2
y=-4 and 4
(6+2)/2 , (-4+4)/2
8/2 ,0/2
the midpoint is (4,0) A
There are three elements in that set.
The area of square is
square units
<h3><u>Solution:</u></h3>
Given that square has side length (x+5) units
To find: area of square
<em><u>The area of square is given as:</u></em>

Where "a" is the length of side
From question, length of each side "a" = x + 5 units
Substituting the value in above formula,



Thus the area of square is
square units