![\boxed{y=6\sqrt{3}}](https://tex.z-dn.net/?f=%5Cboxed%7By%3D6%5Csqrt%7B3%7D%7D)
<h2>
Explanation:</h2>
For a better understanding of the problem I've built up two triangles from the given triangular shape. So these two triangles are similar. Therefore, we can solve this problem by using ratios and corresponding sides in this way:
![\frac{x}{3}=\frac{12}{x} \\ \\ x^2=36 \\ \\ x=\sqrt{36} \\ \\ x=6](https://tex.z-dn.net/?f=%5Cfrac%7Bx%7D%7B3%7D%3D%5Cfrac%7B12%7D%7Bx%7D%20%5C%5C%20%5C%5C%20x%5E2%3D36%20%5C%5C%20%5C%5C%20x%3D%5Csqrt%7B36%7D%20%5C%5C%20%5C%5C%20x%3D6)
But our goal is to find y. Let's call w the height of the small triangle, then:
![w=\sqrt{6^2-3^2}=3\sqrt{3}](https://tex.z-dn.net/?f=w%3D%5Csqrt%7B6%5E2-3%5E2%7D%3D3%5Csqrt%7B3%7D)
Applying the concept of ratios again:
![\frac{y}{w}=\frac{x}{3} \\ \\ y=w \left(\frac{x}{3}\right) \\ \\ y=3\sqrt{3}\left(\frac{6}{3}\right) \\ \\ \boxed{y=6\sqrt{3}}](https://tex.z-dn.net/?f=%5Cfrac%7By%7D%7Bw%7D%3D%5Cfrac%7Bx%7D%7B3%7D%20%5C%5C%20%5C%5C%20y%3Dw%20%5Cleft%28%5Cfrac%7Bx%7D%7B3%7D%5Cright%29%20%5C%5C%20%5C%5C%20y%3D3%5Csqrt%7B3%7D%5Cleft%28%5Cfrac%7B6%7D%7B3%7D%5Cright%29%20%5C%5C%20%5C%5C%20%5Cboxed%7By%3D6%5Csqrt%7B3%7D%7D)
<h2>Learn more:</h2>
Right triangle: brainly.com/question/10684799
#LearnWithBrainly
Answer:
i dont get it
Step-by-step explanation:
Answer:
The tower is about 235 m.
Step-by-step explanation:
Let x be the height of the tower
tan θ = opp / adj
tan 78 °= x / 50
x = 50 tan 78 °
x = 235
∴ The tower is about 235 m.
Hope this answer helps you :)
Have a great day
Mark brainliest
Domain means the values of independent variable(input) which will give defined output to the function.
Given:
The height h of a projectile is a function of the time t it is in the air. The height in feet for t seconds is given by the function
![h(t)=-16t^2 + 96t](https://tex.z-dn.net/?f=%20h%28t%29%3D-16t%5E2%20%2B%2096t%20)
Solution:
To get defined output, the height h(t) need to be greater than or equal to zero. We need to set up an inequality and solve it to find the domain values.
![To \; find \; domain:\\\\h(t) \geq0\\\\-16t^2+96t \geq 0\\Factoring \; -16t \; in \; the \; left \; side \; of \; the \; inequality\\\\-16t(t-6) \geq 0\\Step \; 1: Find \; Boundary \; Points \; by \; setting \; up \; above \; inequality \; to \; zero.\\\\t(t-6)=0\\Use \; zero \; factor \; property \; to \; solve\\\\t=0 \; (or) \; t = 6\\\\Step \; 2: \; List \; the \; possible \; solution \; interval \; using \; boundary \; points\\(- \infty,0], \; [0, 6], \& [6, \infty)](https://tex.z-dn.net/?f=%20To%20%5C%3B%20find%20%5C%3B%20domain%3A%5C%5C%5C%5Ch%28t%29%20%5Cgeq0%5C%5C%5C%5C-16t%5E2%2B96t%20%5Cgeq%20%200%5C%5CFactoring%20%5C%3B%20-16t%20%5C%3B%20in%20%5C%3B%20the%20%5C%3B%20left%20%5C%3B%20side%20%5C%3B%20of%20%5C%3B%20the%20%5C%3B%20inequality%5C%5C%5C%5C-16t%28t-6%29%20%5Cgeq%20%200%5C%5CStep%20%5C%3B%201%3A%20Find%20%5C%3B%20Boundary%20%5C%3B%20Points%20%5C%3B%20by%20%5C%3B%20setting%20%5C%3B%20up%20%5C%3B%20above%20%5C%3B%20inequality%20%5C%3B%20to%20%5C%3B%20zero.%5C%5C%5C%5Ct%28t-6%29%3D0%5C%5CUse%20%5C%3B%20zero%20%5C%3B%20factor%20%5C%3B%20property%20%5C%3B%20to%20%5C%3B%20solve%5C%5C%5C%5Ct%3D0%20%5C%3B%20%28or%29%20%5C%3B%20t%20%3D%206%5C%5C%5C%5CStep%20%5C%3B%202%3A%20%5C%3B%20List%20%5C%3B%20the%20%5C%3B%20possible%20%20%5C%3B%20solution%20%5C%3B%20interval%20%5C%3B%20using%20%5C%3B%20boundary%20%5C%3B%20points%5C%5C%28-%20%5Cinfty%2C0%5D%2C%20%5C%3B%20%5B0%2C%206%5D%2C%20%5C%26%20%5B6%2C%20%5Cinfty%29%20)
![Step \; 3:Pick \; test \; point \; from \; each \; interval \; to \; check \; whether \\\; makes \; the \; inequality \; TRUE \; or \; FALSE\\\\When \; t = -1\\-16(-1)(-1-6) \geq 0\\-112 \geq 0 \; FALSE\\(-\infty, 0] \; is \; not \; solution\\Also \; Logically \; time \; t \; cannot \; be \; negative\\\\When \; t = 1\\-16(1)(1-6) \geq 0\\80 \geq 0 \; TRUE\\ \; [0, 6] \; is \; a \; solution\\\\When \; t = 7\\-16(7)(7-6) \geq 0\\-112 \geq 0 \; FALSE\\ \; [6, -\infty) \; is \; not \; solution](https://tex.z-dn.net/?f=%20Step%20%5C%3B%203%3APick%20%5C%3B%20test%20%5C%3B%20point%20%5C%3B%20from%20%5C%3B%20each%20%5C%3B%20interval%20%5C%3B%20to%20%5C%3B%20check%20%5C%3B%20whether%20%5C%5C%5C%3B%20makes%20%5C%3B%20the%20%5C%3B%20inequality%20%5C%3B%20TRUE%20%5C%3B%20or%20%5C%3B%20FALSE%5C%5C%5C%5CWhen%20%5C%3B%20t%20%3D%20-1%5C%5C-16%28-1%29%28-1-6%29%20%5Cgeq%20%200%5C%5C-112%20%5Cgeq%20%200%20%5C%3B%20FALSE%5C%5C%28-%5Cinfty%2C%200%5D%20%5C%3B%20is%20%5C%3B%20not%20%5C%3B%20solution%5C%5CAlso%20%5C%3B%20Logically%20%5C%3B%20time%20%5C%3B%20t%20%5C%3B%20cannot%20%5C%3B%20be%20%5C%3B%20negative%5C%5C%5C%5CWhen%20%5C%3B%20t%20%3D%201%5C%5C-16%281%29%281-6%29%20%5Cgeq%20%200%5C%5C80%20%5Cgeq%20%200%20%5C%3B%20TRUE%5C%5C%20%5C%3B%20%5B0%2C%206%5D%20%5C%3B%20is%20%5C%3B%20a%20%5C%3B%20solution%5C%5C%5C%5CWhen%20%5C%3B%20t%20%3D%207%5C%5C-16%287%29%287-6%29%20%5Cgeq%20%200%5C%5C-112%20%5Cgeq%20%200%20%5C%3B%20FALSE%5C%5C%20%5C%3B%20%5B6%2C%20-%5Cinfty%29%20%5C%3B%20is%20%5C%3B%20not%20%5C%3B%20solution%20)
Conclusion:
The domain of the function is the time in between 0 to 6 seconds
![0 \leq t \leq 6](https://tex.z-dn.net/?f=%200%20%5Cleq%20%20t%20%5Cleq%20%206%20)
The height will be positive in the above interval.