3x - y + z = 5 . . . (1)
x + 3y + 3z = -6 . . . (2)
x + 4y - 2z = 12 . . . (3)
From (2), x = -6 - 3y - 3z . . . (4)
Substituting for x in (1) and (3) gives
3(-6 - 3y - 3z) - y + z = 5 => -18 - 9y - 9z - y + z = 5 => -10y - 8z = 23 . . (5)
-6 - 3y - 3z + 4y - 2z = 12 => y - 5z = 18 . . . (6)
(6) x 10 => 10y - 50z = 180 . . . (7)
(5) + (7) => -58z = 203
z = 203/-58 = -3.5
From (6), y - 5(-3.5) = 18 => y = 18 - 17.5 = 0.5
From (4), x = -6 - 3(0.5) - 3(-3.5) = -6 - 1.5 + 10.5 = 3
x = 3, y = 0.5, z = -3.5
Answer:
C. $95,000
Step-by-step explanation:
90.05 times 1055 is $95,000.75 the closest number to that is $95,000.
Answer:
$15 an hour
Step-by-step explanation:
To find this, we divide 120 by 8.
120 ÷ 8 = 15
So Jane gets $15 an hour
I hope this helped, please mark Brainliest, thank you!
Answer:
Using either method, we obtain: 
Step-by-step explanation:
a) By evaluating the integral:
![\frac{d}{dt} \int\limits^t_0 {\sqrt[8]{u^3} } \, du](https://tex.z-dn.net/?f=%5Cfrac%7Bd%7D%7Bdt%7D%20%5Cint%5Climits%5Et_0%20%7B%5Csqrt%5B8%5D%7Bu%5E3%7D%20%7D%20%5C%2C%20du)
The integral itself can be evaluated by writing the root and exponent of the variable u as: ![\sqrt[8]{u^3} =u^{\frac{3}{8}](https://tex.z-dn.net/?f=%5Csqrt%5B8%5D%7Bu%5E3%7D%20%3Du%5E%7B%5Cfrac%7B3%7D%7B8%7D)
Then, an antiderivative of this is: 
which evaluated between the limits of integration gives:

and now the derivative of this expression with respect to "t" is:

b) by differentiating the integral directly: We use Part 1 of the Fundamental Theorem of Calculus which states:
"If f is continuous on [a,b] then

is continuous on [a,b], differentiable on (a,b) and 
Since this this function
is continuous starting at zero, and differentiable on values larger than zero, then we can apply the theorem. That means:

Answer:
The y-intercept is -1
The x-intercept is 4.5
Step-by-step explanation:
We have the following equation:
f(x) = log(2x+1) - 1
The y intercept is the value of f(x) when x is equal to 0, so replacing x by 0 and solving for f(x), we get:
f(0) = log(2*0 + 1 ) -1
f(0) = log(1) - 1
f(0) = 0 - 1 = -1
Additionally, the x-intercept is the value of x when f(x) is equal to 0. So, replacing f(x) by 0 and solving for x, we get: