1) The x-axis represents the energy (
), in joules. The y-axis represents the amplitude (
), in milimeters.
2) The curve depicts an <em>monotonous decrecent</em> rate of change.
3) The amplitude is directly proportional to the root square of the energy.
<h3>How to analyze a graph relationship between two variables</h3>
In this question we have a relationship between two variables, in which we must apply principles of <em>functional</em> analysis to respond three questions presented in the statement.
Now we proceed to answer the three questions below:
- <em>What is on the x-axis? The y-axis?</em> R/ The x-axis represents the energy (
), in joules. The y-axis represents the amplitude (
), in milimeters. - <em>How would you describe the rate of change of the line?</em> R/ The curve depicts an <em>monotonous decrecent</em> rate of change, that is, the slope converges to zero when the energy tends to infinite.
- <em>What does this tell you about the relationship between amplitude and energy?</em> R/ The curve show a strong similarity with a function of the form
. Hence, the amplitude is directly proportional to the root square of the energy.
To learn more on functions, we kindly invite to check this verified question: brainly.com/question/12431044
Yi forgot two factors of 63, which are 3 and 21.
This would make the greatest common factor 21.
Answer:
y = −
2
x − 8
Step-by-step explanation:
Write in slope-intercept form, y
=
m
x
+
b
.
Answer:
correct me if i'm wrong but i think
1.False
2.False
3.True
4.True
Answer:
Please check the explanation
Step-by-step explanation:
Given the function

Given that the output = -3
i.e. y = -3
now substituting the value y=-3 and solve for x to determine the input 'x'


switch sides

Add 1 to both sides


![\mathrm{For\:}g^3\left(x\right)=f\left(a\right)\mathrm{\:the\:solutions\:are\:}g\left(x\right)=\sqrt[3]{f\left(a\right)},\:\sqrt[3]{f\left(a\right)}\frac{-1-\sqrt{3}i}{2},\:\sqrt[3]{f\left(a\right)}\frac{-1+\sqrt{3}i}{2}](https://tex.z-dn.net/?f=%5Cmathrm%7BFor%5C%3A%7Dg%5E3%5Cleft%28x%5Cright%29%3Df%5Cleft%28a%5Cright%29%5Cmathrm%7B%5C%3Athe%5C%3Asolutions%5C%3Aare%5C%3A%7Dg%5Cleft%28x%5Cright%29%3D%5Csqrt%5B3%5D%7Bf%5Cleft%28a%5Cright%29%7D%2C%5C%3A%5Csqrt%5B3%5D%7Bf%5Cleft%28a%5Cright%29%7D%5Cfrac%7B-1-%5Csqrt%7B3%7Di%7D%7B2%7D%2C%5C%3A%5Csqrt%5B3%5D%7Bf%5Cleft%28a%5Cright%29%7D%5Cfrac%7B-1%2B%5Csqrt%7B3%7Di%7D%7B2%7D)
Thus, the input values are:
![x=-\sqrt[3]{2}+5,\:x=\frac{\sqrt[3]{2}\left(1+5\cdot \:2^{\frac{2}{3}}\right)}{2}-i\frac{\sqrt[3]{2}\sqrt{3}}{2},\:x=\frac{\sqrt[3]{2}\left(1+5\cdot \:2^{\frac{2}{3}}\right)}{2}+i\frac{\sqrt[3]{2}\sqrt{3}}{2}](https://tex.z-dn.net/?f=x%3D-%5Csqrt%5B3%5D%7B2%7D%2B5%2C%5C%3Ax%3D%5Cfrac%7B%5Csqrt%5B3%5D%7B2%7D%5Cleft%281%2B5%5Ccdot%20%5C%3A2%5E%7B%5Cfrac%7B2%7D%7B3%7D%7D%5Cright%29%7D%7B2%7D-i%5Cfrac%7B%5Csqrt%5B3%5D%7B2%7D%5Csqrt%7B3%7D%7D%7B2%7D%2C%5C%3Ax%3D%5Cfrac%7B%5Csqrt%5B3%5D%7B2%7D%5Cleft%281%2B5%5Ccdot%20%5C%3A2%5E%7B%5Cfrac%7B2%7D%7B3%7D%7D%5Cright%29%7D%7B2%7D%2Bi%5Cfrac%7B%5Csqrt%5B3%5D%7B2%7D%5Csqrt%7B3%7D%7D%7B2%7D)
And the real input is:
![x=-\sqrt[3]{2}+5](https://tex.z-dn.net/?f=x%3D-%5Csqrt%5B3%5D%7B2%7D%2B5)