The angle relationship and their reasons are:
- m∠HED = m∠FEJ ---> Vertical angles theorem
- m∠KFE = m∠DEH ---> Alternate interior angles theorem
- m∠LFG = m∠DEH ---> Alternate exterior angles theorem
- m∠JEF + m∠LFE = 180° ---> same-side interior angles theorem
- m∠DEJ = m∠EFL ---> Corresponding interior angles theorem
- m∠LFG + m∠GFK = 180 ---> linear pair
The angle pairs are formed based on their relative positions. The following shows each angle relationship and their reasons:
∠HED and ∠FEJ are directly vertically opposite each other, therefore, they are equal based on the vertical angles theorem.
- m∠HED = m∠FEJ ---> Vertical angles theorem
∠KFE and ∠FEJ are alternate interior angles, therefore, they are equal based on the alternate interior angles theorem.
- m∠KFE = m∠DEH ---> Alternate interior angles theorem
∠LFG and ∠FEJ are alternate exterior angles, therefore, they are equal based on the alternate exterior angles theorem.
- m∠LFG = m∠DEH ---> Alternate exterior angles theorem
∠JEF and ∠LFE are interior angles on same side of the transversal, therefore, the sum of both angles equal 180 degrees based on the same-side interior angles theorem.
- m∠JEF + m∠LFE = 180° ---> same-side interior angles theorem
∠DEJ and ∠EFL are corresponding angles, therefore, they are equal based on the corresponding angles theorem.
- m∠DEJ = m∠EFL ---> Corresponding interior angles theorem
∠LFG and ∠GFK are angles on a straight line, therefore the sum of both angles will equal 180 degrees because they are a linear pair.
- m∠LFG + m∠GFK = 180 ---> linear pair
Learn more about angle relationship on:
brainly.com/question/12591450