Answer:
B=3
Step-by-step explanation:
30/3=10
the inequality wanted some thing equal or grater so 30/3=10
I would say the answer is B
Answer:
3.6
Step-by-step explanation:
Answer:
6
Step-by-step explanation:
The mode of a data set, is the value that occurs the most often. There can be multiple modes, if two values have the same amount of frequency in a data set as well as having the highest frequency. So in this case case it appears there is only 1 mode with that being 6, since it appears 3 times. with no other value appearing this much in the data set.
In order to multiply a matrix by another matrix, we multiply the rows in the first matrix by the columns in the other matrix (How this is done is shown below)
To determine the pairs of matrices that AB=BA, we will determine AB and BA for each of the options below.
For the first option
![A= \left[\begin{array}{cc}1&0&-2&1&\end{array}\right]; B= \left[\begin{array}{cc}5&0&3&2&\end{array}\right] \\](https://tex.z-dn.net/?f=A%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D1%260%26-2%261%26%5Cend%7Barray%7D%5Cright%5D%3B%20B%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D5%260%263%262%26%5Cend%7Barray%7D%5Cright%5D%20%5C%5C)
![AB= \left[\begin{array}{cc}(1\times5)+(0\times3)&(1\times0)+(0\times 2)&(-2\times5)+(1\times3)&(-2\times0)+(1\times2)&\end{array}\right]\\AB= \left[\begin{array}{cc}5+0&0+0&-10+3&0+2&\end{array}\right]\\AB = \left[\begin{array}{cc}5&0&-7&2&\end{array}\right] \\](https://tex.z-dn.net/?f=AB%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D%281%5Ctimes5%29%2B%280%5Ctimes3%29%26%281%5Ctimes0%29%2B%280%5Ctimes%202%29%26%28-2%5Ctimes5%29%2B%281%5Ctimes3%29%26%28-2%5Ctimes0%29%2B%281%5Ctimes2%29%26%5Cend%7Barray%7D%5Cright%5D%5C%5CAB%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D5%2B0%260%2B0%26-10%2B3%260%2B2%26%5Cend%7Barray%7D%5Cright%5D%5C%5CAB%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D5%260%26-7%262%26%5Cend%7Barray%7D%5Cright%5D%20%5C%5C)
and
![BA= \left[\begin{array}{cc}(5\times1)+(0\times-2)&(5\times0)+(0\times 1)&(3\times1)+(2\times-2)&(3\times0)+(1\times2)&\end{array}\right]\\BA= \left[\begin{array}{cc}5+0&0+0&3+-4&0+2&\end{array}\right]\\BA = \left[\begin{array}{cc}5&0&-1&2&\end{array}\right] \\](https://tex.z-dn.net/?f=BA%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D%285%5Ctimes1%29%2B%280%5Ctimes-2%29%26%285%5Ctimes0%29%2B%280%5Ctimes%201%29%26%283%5Ctimes1%29%2B%282%5Ctimes-2%29%26%283%5Ctimes0%29%2B%281%5Ctimes2%29%26%5Cend%7Barray%7D%5Cright%5D%5C%5CBA%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D5%2B0%260%2B0%263%2B-4%260%2B2%26%5Cend%7Barray%7D%5Cright%5D%5C%5CBA%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D5%260%26-1%262%26%5Cend%7Barray%7D%5Cright%5D%20%5C%5C)
∴ AB≠BA
For the second option
![A= \left[\begin{array}{cc}1&0&-1&2&\end{array}\right]; B= \left[\begin{array}{cc}3&0&6&-3&\end{array}\right] \\](https://tex.z-dn.net/?f=A%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D1%260%26-1%262%26%5Cend%7Barray%7D%5Cright%5D%3B%20B%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D3%260%266%26-3%26%5Cend%7Barray%7D%5Cright%5D%20%5C%5C)
![AB= \left[\begin{array}{cc}(1\times3)+(0\times6)&(1\times0)+(0\times -3)&(-1\times3)+(2\times6)&(-1\times0)+(2\times-3)&\end{array}\right]\\AB= \left[\begin{array}{cc}3+0&0+0&-3+12&0+-6&\end{array}\right]\\AB = \left[\begin{array}{cc}3&0&9&-6&\end{array}\right] \\](https://tex.z-dn.net/?f=AB%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D%281%5Ctimes3%29%2B%280%5Ctimes6%29%26%281%5Ctimes0%29%2B%280%5Ctimes%20-3%29%26%28-1%5Ctimes3%29%2B%282%5Ctimes6%29%26%28-1%5Ctimes0%29%2B%282%5Ctimes-3%29%26%5Cend%7Barray%7D%5Cright%5D%5C%5CAB%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D3%2B0%260%2B0%26-3%2B12%260%2B-6%26%5Cend%7Barray%7D%5Cright%5D%5C%5CAB%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D3%260%269%26-6%26%5Cend%7Barray%7D%5Cright%5D%20%5C%5C)
and
![BA= \left[\begin{array}{cc}(3\times1)+(0\times-1)&(3\times0)+(0\times 2)&(6\times1)+(-3\times-1)&(6\times0)+(-3\times2)&\end{array}\right]\\BA= \left[\begin{array}{cc}3+0&0+0&6+3&0+-6&\end{array}\right]\\BA = \left[\begin{array}{cc}3&0&9&-6&\end{array}\right] \\](https://tex.z-dn.net/?f=BA%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D%283%5Ctimes1%29%2B%280%5Ctimes-1%29%26%283%5Ctimes0%29%2B%280%5Ctimes%202%29%26%286%5Ctimes1%29%2B%28-3%5Ctimes-1%29%26%286%5Ctimes0%29%2B%28-3%5Ctimes2%29%26%5Cend%7Barray%7D%5Cright%5D%5C%5CBA%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D3%2B0%260%2B0%266%2B3%260%2B-6%26%5Cend%7Barray%7D%5Cright%5D%5C%5CBA%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D3%260%269%26-6%26%5Cend%7Barray%7D%5Cright%5D%20%5C%5C)
Here AB = BA
For the third option
![A= \left[\begin{array}{cc}1&0&-1&2&\end{array}\right]; B= \left[\begin{array}{cc}5&0&3&2&\end{array}\right] \\](https://tex.z-dn.net/?f=A%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D1%260%26-1%262%26%5Cend%7Barray%7D%5Cright%5D%3B%20B%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D5%260%263%262%26%5Cend%7Barray%7D%5Cright%5D%20%5C%5C)
![AB= \left[\begin{array}{cc}(1\times5)+(0\times3)&(1\times0)+(0\times 2)&(-1\times5)+(2\times3)&(-1\times0)+(2\times2)&\end{array}\right]\\AB= \left[\begin{array}{cc}5+0&0+0&-5+6&0+4&\end{array}\right]\\AB = \left[\begin{array}{cc}5&0&1&4&\end{array}\right] \\](https://tex.z-dn.net/?f=AB%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D%281%5Ctimes5%29%2B%280%5Ctimes3%29%26%281%5Ctimes0%29%2B%280%5Ctimes%202%29%26%28-1%5Ctimes5%29%2B%282%5Ctimes3%29%26%28-1%5Ctimes0%29%2B%282%5Ctimes2%29%26%5Cend%7Barray%7D%5Cright%5D%5C%5CAB%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D5%2B0%260%2B0%26-5%2B6%260%2B4%26%5Cend%7Barray%7D%5Cright%5D%5C%5CAB%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D5%260%261%264%26%5Cend%7Barray%7D%5Cright%5D%20%5C%5C)
and
![BA= \left[\begin{array}{cc}(5\times1)+(0\times-1)&(5\times0)+(0\times 2)&(3\times1)+(2\times-1)&(3\times0)+(2\times2)&\end{array}\right]\\BA= \left[\begin{array}{cc}5+0&0+0&3+-2&0+4&\end{array}\right]\\BA = \left[\begin{array}{cc}5&0&1&4&\end{array}\right] \\](https://tex.z-dn.net/?f=BA%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D%285%5Ctimes1%29%2B%280%5Ctimes-1%29%26%285%5Ctimes0%29%2B%280%5Ctimes%202%29%26%283%5Ctimes1%29%2B%282%5Ctimes-1%29%26%283%5Ctimes0%29%2B%282%5Ctimes2%29%26%5Cend%7Barray%7D%5Cright%5D%5C%5CBA%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D5%2B0%260%2B0%263%2B-2%260%2B4%26%5Cend%7Barray%7D%5Cright%5D%5C%5CBA%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D5%260%261%264%26%5Cend%7Barray%7D%5Cright%5D%20%5C%5C)
Here also, AB=BA
For the fourth option
![A= \left[\begin{array}{cc}1&0&-2&1&\end{array}\right]; B= \left[\begin{array}{cc}3&0&6&-3&\end{array}\right] \\](https://tex.z-dn.net/?f=A%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D1%260%26-2%261%26%5Cend%7Barray%7D%5Cright%5D%3B%20B%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D3%260%266%26-3%26%5Cend%7Barray%7D%5Cright%5D%20%5C%5C)
![AB= \left[\begin{array}{cc}(1\times3)+(0\times6)&(1\times0)+(0\times -3)&(-2\times3)+(1\times6)&(-2\times0)+(1\times-3)&\end{array}\right]\\AB= \left[\begin{array}{cc}3+0&0+0&-6+6&0+-3&\end{array}\right]\\AB = \left[\begin{array}{cc}3&0&0&-3&\end{array}\right] \\](https://tex.z-dn.net/?f=AB%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D%281%5Ctimes3%29%2B%280%5Ctimes6%29%26%281%5Ctimes0%29%2B%280%5Ctimes%20-3%29%26%28-2%5Ctimes3%29%2B%281%5Ctimes6%29%26%28-2%5Ctimes0%29%2B%281%5Ctimes-3%29%26%5Cend%7Barray%7D%5Cright%5D%5C%5CAB%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D3%2B0%260%2B0%26-6%2B6%260%2B-3%26%5Cend%7Barray%7D%5Cright%5D%5C%5CAB%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D3%260%260%26-3%26%5Cend%7Barray%7D%5Cright%5D%20%5C%5C)
and
![BA= \left[\begin{array}{cc}(3\times1)+(0\times-2)&(3\times0)+(0\times 1)&(6\times1)+(-3\times-2)&(6\times0)+(-3\times1)&\end{array}\right]\\BA= \left[\begin{array}{cc}3+0&0+0&6+6&0+-3&\end{array}\right]\\BA = \left[\begin{array}{cc}3&0&12&-3&\end{array}\right] \\](https://tex.z-dn.net/?f=BA%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D%283%5Ctimes1%29%2B%280%5Ctimes-2%29%26%283%5Ctimes0%29%2B%280%5Ctimes%201%29%26%286%5Ctimes1%29%2B%28-3%5Ctimes-2%29%26%286%5Ctimes0%29%2B%28-3%5Ctimes1%29%26%5Cend%7Barray%7D%5Cright%5D%5C%5CBA%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D3%2B0%260%2B0%266%2B6%260%2B-3%26%5Cend%7Barray%7D%5Cright%5D%5C%5CBA%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D3%260%2612%26-3%26%5Cend%7Barray%7D%5Cright%5D%20%5C%5C)
Here, AB≠BA
Hence, it is only in the second and third options that AB = BA
and ![A= \left[\begin{array}{cc}1&0&-1&2&\end{array}\right]B= \left[\begin{array}{cc}5&0&3&2&\end{array}\right] \\](https://tex.z-dn.net/?f=A%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D1%260%26-1%262%26%5Cend%7Barray%7D%5Cright%5DB%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D5%260%263%262%26%5Cend%7Barray%7D%5Cright%5D%20%5C%5C)
Learn more on matrices multiplication here: brainly.com/question/12755004