1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ray Of Light [21]
2 years ago
15

Rectangle 1 has length x and width y. Rectangle 2 is made by multiplying each dimension of Rectangle 1 by a factor of K, where k

> 0. ( Answer Part A, Answer Part B, and Answer Part C. ( Will Mark Brainliest and do not repaste another students answer on Brainly or any other website or you'll be reported. Thank you. ​

Mathematics
1 answer:
STALIN [3.7K]2 years ago
7 0

\bold{\huge{\underline{\pink{ Solution }}}}

<h3><u>Given </u><u>:</u><u>-</u><u> </u></h3>

  • <u>Rectangle </u><u>1</u><u> </u><u> </u><u>has </u><u>length </u><u>x</u><u> </u><u>and </u><u>width </u><u>y</u>
  • <u>Rectangle</u><u> </u><u>2</u><u> </u><u>is </u><u>made </u><u>by </u><u>multiplying </u><u>each </u><u>dimensions </u><u>of </u><u>rectangle </u><u>1</u><u> </u><u>by </u><u>a </u><u>factor </u><u>of </u><u>k </u>
  • <u>Where</u><u>, </u><u>k </u><u>></u><u> </u><u>0</u><u> </u><u> </u>

<h3><u>Answer </u><u>1</u><u> </u><u>:</u><u>-</u></h3>

Yes, The rectangle 1 and rectangle 2 are similar .

<h3><u>According </u><u>to </u><u>the </u><u>similarity </u><u>theorem </u><u>:</u><u>-</u></h3>

  • If the ratio of length and breath of both the triangles are same then the given triangles are similar.

<u>Let's </u><u>Understand </u><u>the </u><u>above </u><u>theorem </u><u>:</u><u>-</u>

The dimensions of rectangle 1 are x and y

<u>Now</u><u>, </u>

  • Rectangle 2 is made by multiplying each dimensions of rectangle 1 by a factor of k .

Let assume the value of K be 5

<u>Therefore</u><u>, </u>

The dimensions of rectangle 2 are

\sf{ 5x \:and \:5y }

<u>Now</u><u>, </u><u> </u><u>The </u><u>ratios </u><u>of </u><u>dimensions </u><u>of </u><u>both </u><u>the </u><u>rectangle </u><u>:</u><u>-</u>

  • \bold{Rectangle 1 =  Rectangle 2}

\bold{\dfrac{ x }{y}}{\bold{ = }}{\bold{\dfrac{5x}{5y}}}

\bold{\blue{\dfrac{ x }{y}}}{\bold{\blue{ = }}}{\bold{\blue{\dfrac{x}{y}}}}

<u>From </u><u>above</u><u>, </u>

We can conclude that the ratios of both the rectangles are same

Hence , Both the rectangles are similar

<h3><u>Answer </u><u>2</u><u> </u><u>:</u><u>-</u><u> </u></h3>

<u>Here</u><u>, </u>

We have to proof that, the

  • Perimeter of rectangle 2 = k(perimeter of rectangle 1 )

In the previous questions, we have assume the value of k = 5

<h3><u>Therefore</u><u>, </u></h3>

<u>According </u><u>to </u><u>the </u><u>question</u><u>, </u>

Perimeter of rectangle 1

\sf{ = 2( length + Breath) }

\bold{\pink{= 2( x + y ) }}

Thus, The perimeter of rectangle 1

Perimeter of rectangle 2

\sf{ = 2( length + Breath) }

\sf{ = 2(5x + 5y) }

\sf{ =  2 × 5( x + y) }

\bold{\pink{= 10(x + y) }}

Thus, The perimeter of rectangle 2

<u>According </u><u>to </u><u>the </u><u>given </u><u>condition </u><u>:</u><u>-</u>

  • Perimeter of rectangle 2 = k( perimeter of rectangle 1 )

<u>Subsitute </u><u>the </u><u>required </u><u>values</u><u>, </u>

\sf{ 2(x + y) = 10(x + y)}

\bold{\pink{2x + 2y = 5(2x + 2y) }}

<u>From </u><u>Above</u><u>, </u>

We can conclude that the, Perimeter of rectangle 2 is 5 times of perimeter of rectangle 1 and we assume the value of k = 5.

Hence, The perimeter of rectangle 2 is k times of rectangle 1

<h3><u>Answer 3 :</u></h3>

<u>Here</u><u>, </u>

We have to proof that ,

  • <u>The </u><u>area </u><u>of </u><u>rectangle </u><u>2</u><u> </u><u>is </u><u>k²</u><u> </u><u>times </u><u>of </u><u>the </u><u>area </u><u>of </u><u>rectangle </u><u>1</u><u>.</u>

<u>That </u><u>is</u><u>, </u>

  • Area of rectangle 1 = k²( Area of rectangle)

<h3><u>Therefore</u><u>, </u></h3>

<u>According </u><u>to </u><u>the </u><u>question</u><u>, </u>

<u>Area </u><u>of </u><u>rectangle </u><u>1</u>

\sf{ = Length × Breath }

\sf{ = x × y }

\bold{\red{= xy }}

<u>Area </u><u>of </u><u>rectangle </u><u>2</u>

\sf{ = Length × Breath }

\sf{ = 5x × 5y }

\bold{\red{ = 25xy }}

<u>According </u><u>to </u><u>the </u><u>given </u><u>condition </u><u>:</u><u>-</u>

  • Area of rectangle 1 = k²( Area of rectangle)

\sf{ xy = 25xy }

\bold{\red{xy = (5)²xy }}

<u>From </u><u>Above</u><u>, </u>

We can conclude that the, Area of rectangle 2 is (5)² times of area of rectangle 1 and we have assumed the value of k = 5

Hence, The Area of rectangle 2 is k times of rectangle 1 .

You might be interested in
Need help on math idk how to do this it says 118/13 = 59/z then wants me to give it an answer ik the answer 6.5 but how?
Hatshy [7]

Answer: 6.5

<u>Step-by-step explanation:</u>

\frac{118}{13} = \frac{59}{z}

Cross multiply:  118(z) = 13(59)

                                z = \frac{13(59)}{118}

                                   = 6.5

5 0
3 years ago
ILL GIVE BRAINLIEST
bixtya [17]

Answer:

The answer is B

Step-by-step explanation:

If you look at the graph, you can look at number of tickets and see that to get 10 tickets, you would get charged 80 dollars not 88, so the answer is B

8 0
3 years ago
? Question
guajiro [1.7K]

Answer:

First you

Step-by-step explanation:

3 0
3 years ago
Read 2 more answers
Find the total composite area​
prohojiy [21]

Answer:

Times, and conquer.

Step-by-step explanation:

First half the picture, for the circle and square. so we know the base is 28m, and the length including the circle is 24. So now times the two numbers and bam your answer.

3 0
3 years ago
The ratio of boys to girls at the beach cleanup was 7:8. If there were 42 boys, how many girls were there?
sergey [27]

Answer: 48

Step-by-step explanation:

7:8 is equal to 42:48 because its multiplying 6 to the original numbers


3 0
4 years ago
Other questions:
  • 5x − 3y − z if x = −2, y = 2, and z = −3
    7·2 answers
  • What is 2.325 rounded to the nearest tenth
    5·1 answer
  • Find the simple interest on a $2,350 principal deposited for 6 years at a rate of 2.77%.
    8·1 answer
  • What other ways can you write these fractions? -12/19. 3/-15. 8/20
    9·2 answers
  • The frequency table shows the scores from rolling a dice 10 times.
    8·1 answer
  • The quotient of b and 286 is equal to 374 <br> Write the sentence as an equation
    9·2 answers
  • The quotient of 19 and a number d increased
    7·1 answer
  • How many 4-digit number are divisible by 7,8,10 and 25​
    15·1 answer
  • (THIS IS WORTH A LOT OF POINTS &amp; I’LL GIVE BRAINLIEST) (only do 1 and 2)
    5·1 answer
  • I need help with this
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!