1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ray Of Light [21]
2 years ago
15

Rectangle 1 has length x and width y. Rectangle 2 is made by multiplying each dimension of Rectangle 1 by a factor of K, where k

> 0. ( Answer Part A, Answer Part B, and Answer Part C. ( Will Mark Brainliest and do not repaste another students answer on Brainly or any other website or you'll be reported. Thank you. ​

Mathematics
1 answer:
STALIN [3.7K]2 years ago
7 0

\bold{\huge{\underline{\pink{ Solution }}}}

<h3><u>Given </u><u>:</u><u>-</u><u> </u></h3>

  • <u>Rectangle </u><u>1</u><u> </u><u> </u><u>has </u><u>length </u><u>x</u><u> </u><u>and </u><u>width </u><u>y</u>
  • <u>Rectangle</u><u> </u><u>2</u><u> </u><u>is </u><u>made </u><u>by </u><u>multiplying </u><u>each </u><u>dimensions </u><u>of </u><u>rectangle </u><u>1</u><u> </u><u>by </u><u>a </u><u>factor </u><u>of </u><u>k </u>
  • <u>Where</u><u>, </u><u>k </u><u>></u><u> </u><u>0</u><u> </u><u> </u>

<h3><u>Answer </u><u>1</u><u> </u><u>:</u><u>-</u></h3>

Yes, The rectangle 1 and rectangle 2 are similar .

<h3><u>According </u><u>to </u><u>the </u><u>similarity </u><u>theorem </u><u>:</u><u>-</u></h3>

  • If the ratio of length and breath of both the triangles are same then the given triangles are similar.

<u>Let's </u><u>Understand </u><u>the </u><u>above </u><u>theorem </u><u>:</u><u>-</u>

The dimensions of rectangle 1 are x and y

<u>Now</u><u>, </u>

  • Rectangle 2 is made by multiplying each dimensions of rectangle 1 by a factor of k .

Let assume the value of K be 5

<u>Therefore</u><u>, </u>

The dimensions of rectangle 2 are

\sf{ 5x \:and \:5y }

<u>Now</u><u>, </u><u> </u><u>The </u><u>ratios </u><u>of </u><u>dimensions </u><u>of </u><u>both </u><u>the </u><u>rectangle </u><u>:</u><u>-</u>

  • \bold{Rectangle 1 =  Rectangle 2}

\bold{\dfrac{ x }{y}}{\bold{ = }}{\bold{\dfrac{5x}{5y}}}

\bold{\blue{\dfrac{ x }{y}}}{\bold{\blue{ = }}}{\bold{\blue{\dfrac{x}{y}}}}

<u>From </u><u>above</u><u>, </u>

We can conclude that the ratios of both the rectangles are same

Hence , Both the rectangles are similar

<h3><u>Answer </u><u>2</u><u> </u><u>:</u><u>-</u><u> </u></h3>

<u>Here</u><u>, </u>

We have to proof that, the

  • Perimeter of rectangle 2 = k(perimeter of rectangle 1 )

In the previous questions, we have assume the value of k = 5

<h3><u>Therefore</u><u>, </u></h3>

<u>According </u><u>to </u><u>the </u><u>question</u><u>, </u>

Perimeter of rectangle 1

\sf{ = 2( length + Breath) }

\bold{\pink{= 2( x + y ) }}

Thus, The perimeter of rectangle 1

Perimeter of rectangle 2

\sf{ = 2( length + Breath) }

\sf{ = 2(5x + 5y) }

\sf{ =  2 × 5( x + y) }

\bold{\pink{= 10(x + y) }}

Thus, The perimeter of rectangle 2

<u>According </u><u>to </u><u>the </u><u>given </u><u>condition </u><u>:</u><u>-</u>

  • Perimeter of rectangle 2 = k( perimeter of rectangle 1 )

<u>Subsitute </u><u>the </u><u>required </u><u>values</u><u>, </u>

\sf{ 2(x + y) = 10(x + y)}

\bold{\pink{2x + 2y = 5(2x + 2y) }}

<u>From </u><u>Above</u><u>, </u>

We can conclude that the, Perimeter of rectangle 2 is 5 times of perimeter of rectangle 1 and we assume the value of k = 5.

Hence, The perimeter of rectangle 2 is k times of rectangle 1

<h3><u>Answer 3 :</u></h3>

<u>Here</u><u>, </u>

We have to proof that ,

  • <u>The </u><u>area </u><u>of </u><u>rectangle </u><u>2</u><u> </u><u>is </u><u>k²</u><u> </u><u>times </u><u>of </u><u>the </u><u>area </u><u>of </u><u>rectangle </u><u>1</u><u>.</u>

<u>That </u><u>is</u><u>, </u>

  • Area of rectangle 1 = k²( Area of rectangle)

<h3><u>Therefore</u><u>, </u></h3>

<u>According </u><u>to </u><u>the </u><u>question</u><u>, </u>

<u>Area </u><u>of </u><u>rectangle </u><u>1</u>

\sf{ = Length × Breath }

\sf{ = x × y }

\bold{\red{= xy }}

<u>Area </u><u>of </u><u>rectangle </u><u>2</u>

\sf{ = Length × Breath }

\sf{ = 5x × 5y }

\bold{\red{ = 25xy }}

<u>According </u><u>to </u><u>the </u><u>given </u><u>condition </u><u>:</u><u>-</u>

  • Area of rectangle 1 = k²( Area of rectangle)

\sf{ xy = 25xy }

\bold{\red{xy = (5)²xy }}

<u>From </u><u>Above</u><u>, </u>

We can conclude that the, Area of rectangle 2 is (5)² times of area of rectangle 1 and we have assumed the value of k = 5

Hence, The Area of rectangle 2 is k times of rectangle 1 .

You might be interested in
WILL PICK BRAINLIEST!!!!!!
marissa [1.9K]

Answer:

1. 24

2. 30

3. 20

4. 12

5. 6

3 0
3 years ago
What is this problem -12=4(x-7)-8x
Fofino [41]

-12=4(x-7)-8x

One solution was found :

                  x = -4

Rearrange:

Rearrange the equation by subtracting what is to the right of the equal sign from both sides of the equation :


                    -12-(4*(x-7)-8*x)=0


Step by step solution :

Step  1  :

Equation at the end of step  1  :

 -12 -  (4 • (x - 7) -  8x)  = 0

Step  2  :

Step  3  :

Pulling out like terms :

3.1     Pull out like factors :


  4x + 16  =   4 • (x + 4)


Equation at the end of step  3  :

 4 • (x + 4)  = 0

Step  4  :

Equations which are never true :

4.1      Solve :    4   =  0

Hope this helps you, Have a nice day.

4 0
3 years ago
A cylinder has a radius of 14 m and a height of 6 m.
Irina18 [472]

Volume of the cylinder is 3696 m²

Step-by-step explanation:

  • Step 1: Calculate volume of the cylinder using the formula V = πr²h

⇒ V = 22/7 × 14² × 6 = 3696 m²

8 0
3 years ago
Manuel and Joe order pasta for $4.55, salad for $5.15, and 2 glasses of lemonade for $1.70 each. The tax is $1.05. How much chan
Svetradugi [14.3K]
They should get 85 cents. ($0.85)
7 0
3 years ago
Amy has a piece of wood that measures 42 inches. The model shows the length remaining after she cut a piece from the 42-inch pie
Hitman42 [59]

Answer:

She has 42 pieces of wood each of 1 inch of length.

Step-by-step explanation:

Amy has 42 inches piece of wood.

She has to cut an inch.

After cutting pieces of inch each she counts the pieces to be 42.

Mathematically

Total length / unit lenght = Number of pieces

42 inches/ 1 inch= 42 pieces.

She has 42 pieces of wood each of 1 inch of length.

6 0
3 years ago
Other questions:
  • given the equations 9x + (3)/(4)y + 6 and 2x + (1)/(2)y=9 by what factor would you multiply the sencond equation to eliminate y
    11·1 answer
  • What is the sum?
    13·2 answers
  • You are baking cookies. You have 7 1/4 cups of flour. You use 2 3/4 cups of flour. How much flour do you have left?
    9·2 answers
  • What are facts using mathematical terms for second grade
    8·1 answer
  • Is 17 feet bigger than 804 inches
    6·2 answers
  • Is triangle AB'C' a dilation of triangle ABC?
    7·1 answer
  • Evaluate. (5.2 + 3) × (6.4 - 1.4) ​
    15·2 answers
  • Rewrite the following without an exponent.<br> (8/5) -1
    8·1 answer
  • 1/? x 1/2 = 1/10<br><br>PLEASE HELP <br>​
    8·2 answers
  • The distribution of head circumference for full term newborn female infants is approximately normal with a mean of 33.8 cm and a
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!