<u>Answer-</u>

<u>Solution-</u>
Rational Root Theorem-

All the potential rational roots are,

The given polynomial is,

Here,

The potential rational roots are,


From, the given options only
satisfies.
Answer:
0.38 and 0.7 maybe it's the answer
Step-by-step explanation:
power of 10 in above questions are 2 and 3 respectively
Step-by-step explanation: To solve this absolute value inequality,
our goal is to get the absolute value by itself on one side of the inequality.
So start by adding 2 to both sides and we have 4|x + 5| ≤ 12.
Now divide both sides by 3 and we have |x + 5| ≤ 3.
Now the the absolute value is isolated, we can split this up.
The first inequality will look exactly like the one
we have right now except for the absolute value.
For the second one, we flip the sign and change the 3 to a negative.
So we have x + 5 ≤ 3 or x + 5 ≥ -3.
Solving each inequality from here, we have x ≤ -2 or x ≥ -8.
Answer:
9 hours
Step-by-step explanation:
36 degrees total /4 degrees per hour = 9 hours
Answer:
A. b(w) = 80w +30
B. input: weeks; output: flowers that bloomed
C. 2830
Step-by-step explanation:
<h3>Part A:</h3>
For f(s) = 2s +30, and s(w) = 40w, the composite function f(s(w)) is ...
b(w) = f(s(w)) = 2(40w) +30
b(w) = 80w +30 . . . . . . blooms over w weeks
__
<h3>Part B:</h3>
The input units of f(s) are <em>seeds</em>. The output units are <em>flowers</em>.
The input units of s(w) are <em>weeks</em>. The output units are <em>seeds</em>.
Then the function b(w) above has input units of <em>weeks</em>, and output units of <em>flowers</em> (blooms).
__
<h3>Part C:</h3>
For 35 weeks, the number of flowers that bloomed is ...
b(35) = 80(35) +30 = 2830 . . . . flowers bloomed over 35 weeks