1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
hichkok12 [17]
3 years ago
5

Meriwether lewis and william clark (pictured here)a re most associated with which of these? question 3 options: building the pan

ama canal discovering gold in california generals in the american revolution exploration of the louisiana territory.
SAT
1 answer:
Sati [7]3 years ago
6 0

Answer:louisiana Territroy

Explanation:

You might be interested in
Reaction of hydrazine with ethanal ​
Tasya [4]
It produces a hydrazone in which the carbon is attached with the nitrogen atom with the means of a double bond.
8 0
3 years ago
Use series to approximate the definite integral i to within the indicated accuracy. i = 1/2 x3 arctan(x) dx 0 (four decimal plac
Valentin [98]

The expression \int\limits^{1/2}_0 {x^3 \arctan(x)} \, dx  is an illustration of definite integrals

The approximated value of the definite integral is 0.0059

<h3>How to evaluate the definite integral?</h3>

The definite integral is given as:

\int\limits^{1/2}_0 {x^3 \arctan(x)} \, dx

For arctan(x), we have the following series equation:

\arctan(x) = \sum\limits^{\infty}_{n = 0} {(-1)^n \cdot \frac{x^{2n + 1}}{2n + 1}}

Multiply both sides of the equation by x^3.

So, we have:

x^3 * \arctan(x) = \sum\limits^{\infty}_{n = 0} {(-1)^n \cdot \frac{x^{2n + 1}}{2n + 1}}  * x^3

Apply the law of indices

x^3 * \arctan(x) = \sum\limits^{\infty}_{n = 0} {(-1)^n \cdot \frac{x^{2n + 1 + 3}}{2n + 1}}

x^3 * \arctan(x) = \sum\limits^{\infty}_{n = 0} {(-1)^n \cdot \frac{x^{2n + 4}}{2n + 1}}

Evaluate the product

x^3 \arctan(x) = \sum\limits^{\infty}_{n = 0} {(-1)^n \cdot \frac{x^{2n + 4}}{2n + 1}}

Introduce the integral sign to the equation

\int\limits^{1/2}_{0}  x^3 \arctan(x)\ dx =\int\limits^{1/2}_{0} \sum\limits^{\infty}_{n = 0} {(-1)^n \cdot \frac{x^{2n + 4}}{2n + 1}}

Integrate the right hand side

\int\limits^{1/2}_{0}  x^3 \arctan(x)\ dx =[ \sum\limits^{\infty}_{n = 0} {(-1)^n \cdot \frac{x^{2n + 4}}{2n + 1}} ]\limits^{1/2}_{0}

Expand the equation by substituting 1/2 and 0 for x

\int\limits^{1/2}_{0}  x^3 \arctan(x)\ dx =[ \sum\limits^{\infty}_{n = 0} {(-1)^n \cdot \frac{(1/2)^{2n + 4}}{2n + 1}} ] - [ \sum\limits^{\infty}_{n = 0} {(-1)^n \cdot \frac{0^{2n + 4}}{2n + 1}} ]

Evaluate the power

\int\limits^{1/2}_{0}  x^3 \arctan(x)\ dx =[ \sum\limits^{\infty}_{n = 0} {(-1)^n \cdot \frac{(1/2)^{2n + 4}}{2n + 1}} ] - 0

\int\limits^{1/2}_{0}  x^3 \arctan(x)\ dx = \sum\limits^{\infty}_{n = 0} {(-1)^n \cdot \frac{(1/2)^{2n + 4}}{2n + 1}}

The nth term of the series is then represented as:

T_n = \frac{(-1)^n}{2^{2n + 5} * (2n + 4)(2n + 1)}

Solve the series by setting n = 0, 1, 2, 3 ..........

T_0 = \frac{(-1)^0}{2^{2(0) + 5} * (2(0) + 4)(2(0) + 1)} = \frac{1}{2^5 * 4 * 1} = 0.00625

T_1 = \frac{(-1)^1}{2^{2(1) + 5} * (2(1) + 4)(2(1) + 1)} = \frac{-1}{2^7 * 6 * 3} = -0.0003720238

T_2 = \frac{(-1)^2}{2^{2(2) + 5} * (2(2) + 4)(2(2) + 1)} = \frac{1}{2^9 * 8 * 5} = 0.00004340277

T_3 = \frac{(-1)^3}{2^{2(3) + 5} * (2(3) + 4)(2(3) + 1)} = \frac{-1}{2^{11} * 10 * 7} = -0.00000634131

..............

At n = 2, we can see that the value of the series has 4 zeros before the first non-zero digit

This means that we add the terms before n = 2

This means that the value of \int\limits^{1/2}_0 {x^3 \arctan(x)} \, dx to 4 decimal points is

\int\limits^{1/2}_0 {x^3 \arctan(x)} \, dx = 0.00625 - 0.0003720238

Evaluate the difference

\int\limits^{1/2}_0 {x^3 \arctan(x)} \, dx = 0.0058779762

Approximate to four decimal places

\int\limits^{1/2}_0 {x^3 \arctan(x)} \, dx = 0.0059

Hence, the approximated value of the definite integral is 0.0059

Read more about definite integrals at:

brainly.com/question/15127807

5 0
2 years ago
Charles was arrested and charged with robbery. His history revealed that he came from a broken family. Due to financial hardship
12345 [234]
2 Based on upbringing and can be determined it was from weak social institutions.
5 0
3 years ago
research different ways that 3D printing is used in society. Tell us about the items that are 3D printed.
Leviafan [203]
With 3D printing, in society, most goods will be designed on computers and “manufactured” in the homes of consumers, which over time will reduce both the costs and environmental impacts of transportation.
8 0
4 years ago
Read 2 more answers
Why are earthquake unpredictable
Ilya [14]
Earthquakes are unpredictable because the signals only happen before a Earthquake is about to start.
6 0
4 years ago
Read 2 more answers
Other questions:
  • A letter from Coulton Engineering Company dated September 12 is to be filed in the Coulton file. How should you arrange it in th
    8·1 answer
  • List some healthy foods and liquids that we should ingest after a muscular strength workout. Just asked the question not the sub
    13·2 answers
  • Why might students take an SAT Subject Test?
    7·2 answers
  • which statement best describes the king’s actions? he welcomes the knight with proper manners. he shows strength in restraining
    10·1 answer
  • What prophecies did Simeon told jesus​
    13·1 answer
  • A victim of sexual abuse may be seductive toward others.
    15·1 answer
  • There are 30 students in a class. There are 18 boys and 12 girls in it. What is the percentage of girls in a class?.
    8·1 answer
  • 13. In cell b13, create a formula without a function using absolute references that subtracts the values of cells b5 and b7 from
    11·1 answer
  • A research was interested in whether there was a difference in appearance management by
    11·1 answer
  • Ten year old madison was riding her brand new scooter
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!