Use Pythagorean theorem (a squared is equal to c squared minus b squared)
Where a is the unknown leg, c is the hypotenuse and b is the known leg
a^2 = 13^2-5^2 which is 144
Then square root one hundred and fourty four to get rid of the power on a
Square root of one hundred and fourty four is twelve
Answer:
This is the correct answer
Step-by-step explanation:
The V = 125
2.4,3, 7 1/3, 221/30,7.36 is order from least to greatest
Answer:
The square root of 18.3 would be: 4.27784992724
Step-by-step explanation:
Answer:
Area = πr², where "r" is some distance "y" and/or the function "(1/6)x"; depending on the situation
Step-by-step explanation:
If I'm picturing this correctly, you'll have conical shape after revolving the function about the x-axis. If you took some generic slice and wanted to find the area of the resulting cross-section, then you would have a circle whose radius is some arbitrary value of the line that matches the slice.
For example:
y = (1/6)x right?
If you took a slice at x = 2, then the radius of the resulting cross-sectional circle would be equal to y = (1/6)•2 =1/3.
From here you just plug it into the area of a circle, πr², to get an area of π/3.
Except with an integral you need to take all the points on the interval, so the radius comes out to be the function itself.
Assuming your integral is in terms of dx, r=y. But in order to integrate in terms of dx you must replace "y" with its function (1/6)x. So ultimately r=(1/6)x and Area = π(1/6)x.