Answer:
See explanation.
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Algebra I</u>
- Functions
- Function Notation
<u>Calculus</u>
Limits
- Right-Side Limit:

- Left-Side Limit:

Limit Rule [Variable Direct Substitution]: 
Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify</em>

<u>Step 2: Find Right Limit</u>
- Substitute in variables [Right-Side Limit]:

- Evaluate limit [Limit Rule - Variable Direct Substitution]:

- Subtract:

∴ the right-side limit equals 2.
<u>Step 3: Find Left Limit</u>
- Substitute in variables [Left-Side Limit]:

- Evaluate limit [Limit Rule - Variable Direct Substitution]:

- [√Radical] Add:

- [√Radical] Evaluate:

∴ the left-side limit equals 2.
<u>Step 4: Find Limit</u>
<em>The right and left-side limits are equal.</em>
∴ 
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Limits
Book: College Calculus 10e
Answer: 0.2 reduced as a fraction 1/5
The answer is
R = 74
Q = 32
:)
Y=-2x+2 and y=x^2-3x.
If there are solutions the x and y values are equal so we can say y=y:
x^2-3x=-2x+2 add 2x to both sides
x^2-x=2 subtract 2 from both sides
x^2-x-2=0 now factor...
x^2+x-2x-2=0
x(x+1)-2(x+1)=0
(x-2)(x+1)=0
So there are two solutions, when x=-1 and 2
Using y=-2x+2 we can find the corresponding y values for the solutions...
y(-1)=-2(-1)+2=2+2=4, y(2)=-2(2)+2=-4+2=-2 so the two solutions are the points:
(-1,4) and (2,-2)