Answer:
Choice B
Step-by-step explanation:
Given radical expression:
![\sqrt[4]{1296 {x}^{16} {y}^{12} }](https://tex.z-dn.net/?f=%20%5Csqrt%5B4%5D%7B1296%20%7Bx%7D%5E%7B16%7D%20%20%7By%7D%5E%7B12%7D%20%7D%20)
To Find:
The Simpler form of this expression
Soln:
![= \sqrt[4]{1296 {x}^{16} {y}^{12} }](https://tex.z-dn.net/?f=%20%3D%20%20%5Csqrt%5B4%5D%7B1296%20%7Bx%7D%5E%7B16%7D%20%20%7By%7D%5E%7B12%7D%20%7D%20)
We could re-write the given expression, according to the law of exponents:
![= \tt \sqrt[4]{(6x {}^{4}y {}^{3}) {}^{4} }](https://tex.z-dn.net/?f=%20%3D%20%20%5Ctt%20%5Csqrt%5B4%5D%7B%286x%20%7B%7D%5E%7B4%7Dy%20%7B%7D%5E%7B3%7D%29%20%20%7B%7D%5E%7B4%7D%20%20%7D%20)
Now we need to bring terms out of the radical as:

Bring out 6x^4 from the absolute & put y^3 only in it:

Choice B is accurate.
Y= 40+(20x), where you asking for something like that?
Answer:
a+4b-24
Step-by-step explanation:
You have to multiply the entire equation by 4, which get you a+4b-24
Answer:
$5728
Step-by-step explanation:
$4000 is deposited into an account with 4.8% interest.
We assume that there are no withdrawals from the account.
Then we are asked the determine the amount will be there in the account after 9 years.
From the formula of simple interest, the final amount in the account after 9 years will be
dollars. (Answer)
The derivative is -6sin(3x)