
- <u>A</u><u> </u><u>car </u><u>travels </u><u>1</u><u>0</u><u> </u><u>km </u><u>southeast </u><u>and </u><u>then </u><u>1</u><u>5</u><u> </u><u>km </u><u>in </u><u>a </u><u>direction </u><u>6</u><u>0</u><u>°</u><u> </u><u>north </u><u>of </u><u>east </u>

- <u>We </u><u>have </u><u>to </u><u>find </u><u>the </u><u>magnitude </u><u>of </u><u>the </u><u>car </u><u>of </u><u>resultant </u><u>vector</u>

Here,
- In South east, car travels = 10km
- In North of east, it travels = 15km
- Angle between south east and north east is 60°
<u>Therefore</u><u>, </u>
According to parallelogram law of resultant vector
<u>If </u><u>two </u><u>vectors </u><u>are </u><u>represented </u><u>by </u><u>two </u><u>adjacent </u><u>sides </u><u>of </u><u>a </u><u>parallelogram </u><u>drawn </u><u>from </u><u>a </u><u>point </u><u> </u><u>,</u><u> </u><u>the </u><u>their </u><u>resultant </u><u>is </u><u>equal </u><u>to </u><u>the </u><u>diagonal </u><u>of </u><u>the </u><u>parallelogram</u><u>. </u>
<u>That </u><u>is</u><u>, </u>

<u>But</u><u>, </u><u> </u><u>we </u><u>have </u><u>to </u><u>calculate </u><u>the </u><u>magnitude </u><u>of </u><u>the </u><u>resultant </u><u>vector </u>

<u>Subsitute </u><u>the </u><u>required </u><u>values</u><u>, </u>






Hence, The magnitude of the car resultant vector is 22.02 km.