Answer:
h'(x) = (-x² ln x + x² + 1) / (x (x² + 1)^(³/₂))
Step-by-step explanation:
h(x) = ln x / √(x² + 1)
You can either use quotient rule, or you can rewrite using negative exponents and use product rule.
h(x) = (ln x) (x² + 1)^(-½)
h'(x) = (ln x) (-½) (x² + 1)^(-³/₂) (2x) + (1/x) (x² + 1)^(-½)
h'(x) = (-x ln x) (x² + 1)^(-³/₂) + (1/x) (x² + 1)^(-½)
h'(x) = (x² + 1)^(-³/₂) (-x ln x + (1/x) (x² + 1))
h'(x) = (1/x) (x² + 1)^(-³/₂) (-x² ln x + x² + 1)
h'(x) = (-x² ln x + x² + 1) / (x (x² + 1)^(³/₂))
Answer:
Step-by-step explanation:
Answer:
- 1,503,050
Step-by-step explanation:
Given that the sum of arithmetic sequence =
n/2[2a + (n-1)d]
Where;
n = 575
a = -4910
d = a i - a i-1 = 8
Substituting values;
575/2 [2(-4910) + (575 -1) 8]
575/2 [(-9820) + 4592]
= - 1,503,050
Answer:
5/6
Step-by-step explanation:
The sides numbered 1,2,5 are green and 2,4,6 are even
We cannot count the 2 twice, so there are 5 unique possibilities of getting either a green or an even
There are 6 total possibilities when rolling the die 1,2,3,4,5,6
P (green or even) = green or even/ total
= 5/6
The answer is c Sam buys gas at a slower rate of 3.4 mile per gallon