1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
WARRIOR [948]
3 years ago
6

Distribute. 8(3x + 9)

Mathematics
2 answers:
Alexandra [31]3 years ago
5 0
The answer would be 24x+72 because 3x times 8 is 24x and and 9 times 8 is 72.
FinnZ [79.3K]3 years ago
4 0

Answer:

24x+72

Step-by-step explanation:

You might be interested in
Need help fast!!! <br> !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
earnstyle [38]

Use the subusitution method for r

g(4)=25-3(4)

g(4)= 25-12

g(4)= 13

Answer is g(4)= 13

8 0
3 years ago
Read 2 more answers
Bradley bought 2 cakes for his class Valentines's party. There are 23 students in his class. How much cake will each student rec
Cloud [144]
So 2 divded into 23 parts =2/23 which is simplest form

so each person will recieve 2/23 of a cake
4 0
3 years ago
A bag of apples weighs 7 7/8 pounds and a full bag costs $10.88. By weight 1/18 of the apples are rotten . What is the cost of t
ioda
Try Analysing The Information Like This, Step by Step;

1. We know that a full bag of 7 7/8 pounds and is $10.88.
2. Now we subtract the bad apples 7 7/8-1/18= a (now we have no bad apples).
3. Part 'a' answer will give you a no. in pounds.
4. Part 'b' - we have to find out $10.88/7 7/8 - 1/18 / 2 to give you the answer.

I hope this helps, sorry I couldn't really help you :)
7 0
3 years ago
Read 2 more answers
Help with num 1 please.​
KengaRu [80]

Answer:

(i)  \displaystyle y' = (6x - 1)ln(2x + 1) + \frac{2x(3x - 1)}{2x + 1}

(ii)  \displaystyle y' = \frac{2x}{ln(x)} - \frac{x^2 + 2}{x(lnx)^2}

(iii)  \displaystyle y' = \frac{e^x[xln(2x) + 1]}{x}

General Formulas and Concepts:

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)

Derivative Property [Addition/Subtraction]:                                                         \displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]  

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹  

Derivative Rule [Product Rule]:                                                                             \displaystyle \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Derivative Rule [Quotient Rule]:                                                                           \displaystyle \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Derivative Rule [Chain Rule]:                                                                                 \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Exponential Differentiation

Logarithmic Differentiation

Step-by-step explanation:

(i)

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle y = (3x^2 - x)ln(2x + 1)

<u>Step 2: Differentiate</u>

  1. Product Rule:                                                                                                 \displaystyle y' = (3x^2 - x)'ln(2x + 1) + (3x^2 - x)[ln(2x + 1)]'
  2. Basic Power Rule/Logarithmic Differentiation [Chain Rule]:                       \displaystyle y' = (6x - 1)ln(2x + 1) + (3x^2 - x)\frac{1}{2x + 1}(2x + 1)'
  3. Basic Power Rule:                                                                                         \displaystyle y' = (6x - 1)ln(2x + 1) + (3x^2 - x)\frac{2}{2x + 1}
  4. Simplify [Factor]:                                                                                           \displaystyle y' = (6x - 1)ln(2x + 1) + \frac{2x(3x - 1)}{2x + 1}

(ii)

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle y = \frac{x^2 + 2}{lnx}

<u>Step 2: Differentiate</u>

  1. Quotient Rule:                                                                                               \displaystyle y' = \frac{(x^2 + 2)'lnx - (x^2 + 2)(lnx)'}{(lnx)^2}
  2. Basic Power Rule/Logarithmic Differentiation:                                           \displaystyle y' = \frac{2xlnx - (x^2 + 2)\frac{1}{x}}{(lnx)^2}
  3. Rewrite:                                                                                                         \displaystyle y' = \frac{2xlnx}{(lnx)^2} - \frac{(x^2 + 2)\frac{1}{x}}{(lnx)^2}
  4. Simplify:                                                                                                         \displaystyle y' = \frac{2x}{ln(x)} - \frac{x^2 + 2}{x(lnx)^2}

(iii)

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle y = e^xln(2x)

<u>Step 2: Differentiate</u>

  1. Product Rule:                                                                                                 \displaystyle y' = (e^x)'ln(2x) + e^x[ln(2x)]'
  2. Exponential Differentiation/Logarithmic Differentiation [Chain Rule]:       \displaystyle y' = e^xln(2x) + e^x(\frac{1}{2x})(2x)'
  3. Basic Power Rule:                                                                                         \displaystyle y' = e^xln(2x) + e^x(\frac{1}{2x})2
  4. Simplify:                                                                                                         \displaystyle y' = e^xln(2x) + \frac{e^x}{x}
  5. Rewrite:                                                                                                         \displaystyle y' = \frac{xe^xln(2x) + e^x}{x}
  6. Factor:                                                                                                           \displaystyle y' = \frac{e^x[xln(2x) + 1]}{x}

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentiation

Book: College Calculus 10e

6 0
3 years ago
What is the value of 4 in the number 745 in
Leokris [45]
40 since it is in the tens place
7 0
3 years ago
Read 2 more answers
Other questions:
  • Jerry has taken a random sample of students and determined the number of electives that each student in his sample took last yea
    14·1 answer
  • Brian wants to fence in his triangular plot of farm land that measures 1.1 by 1.5 by 2.2 miles. Determine the angles at which th
    7·1 answer
  • Latrell has $8 to spend on postcards. He wants to buy one large postcard and some small ones. Write and solve an inequality to d
    13·1 answer
  • What is the fewest pairs of corresponding parts that have to be congruent to establish that two triangles are congruent? Once yo
    15·1 answer
  • Consider the sequence {3,6,9,12,15,…}. Find n if an = 735. Show all steps including the formulas used to calculate your answer.
    7·1 answer
  • $44 in 4 days or $____ per day
    12·2 answers
  • Find y <br> Please help me
    14·1 answer
  • Find the value of x and y of the equilateral triangle
    11·1 answer
  • Evaluate the expression when when c = 3 and d = 33
    13·1 answer
  • Can someone solve this:<br> a = 21+(-4)
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!