Verify stokes' theorem for the helicoid ψ(r,θ)=⟨rcosθ,rsinθ,θ⟩ where (r,θ) lies in the rectangle [0,1]×[0,π/2], and f is the vec
tor field f=⟨6z,8x,8y⟩. first, compute the surface integral: ∬m(∇×f)⋅ds=∫ba∫dcf(r,θ)drdθ, where a= , b= , c= , d= , and f(r,θ)= (use "t" for theta). finally, the value of the surface integral is . next compute the line integral on that part of the boundary from (1,0,0) to (0,1,π/2). ∫cf⋅dr=∫bag(θ)dθ, where a= , b= , and g(θ)=