The watre is 16 inches deep so and you can use our volume calculator to calculate the amount of water in the basement.
A: 40 ft by 28 ft by 16 inches gives 11171 U.S. gallons
B: 16 ft by 22 ft by 16 inches gives 3510.9 U.S. gallons
For a total of 14681.9 gallons. At 50 gallons per minute it will take 294 minutes which is about 5 hours and hence with 2 pumps about 2.5 hours.
I hope this helps,
Answer:
400
Step-by-step explanation:
12 / 0.03
Divide 12 by 3 = 4.
Move the decimal place over 2 to the right.
400.
Hey You!
1 oz = 29.574 ml
16 oz = About 480 ml, so, yes, the answer is C.
The formula to find the slope of a line is m =

where the x's and y's are your given coordinates and m is your slope. So, plug in your coordinates and solve.
m = <span>
![\frac{y_2 - y_1}{x_2 - x_1} Plug in your coordinates m = [tex] \frac{-2 - 7}{8 - -1} Cancel out the double negative m = [tex] \frac{-2 - 7}{8 + 1} Simplify m = [tex] \frac{-9}{9} Divide m = -1 Now, plug that slope and one set of your given coordinates into point-slope form, [tex]y - y_1 = m(x - x_1)](https://tex.z-dn.net/?f=%20%5Cfrac%7By_2%20-%20y_1%7D%7Bx_2%20-%20x_1%7D%20%20%20Plug%20in%20your%20coordinates%20%3C%2Fspan%3Em%20%3D%20%3Cspan%3E%5Btex%5D%20%5Cfrac%7B-2%20-%207%7D%7B8%20-%20-1%7D%20%20%20Cancel%20out%20the%20double%20negative%20%3C%2Fspan%3Em%20%3D%20%3Cspan%3E%5Btex%5D%20%5Cfrac%7B-2%20-%207%7D%7B8%20%2B%201%7D%20%20%20Simplify%20%3C%2Fspan%3Em%20%3D%20%3Cspan%3E%5Btex%5D%20%5Cfrac%7B-9%7D%7B9%7D%20%20%20Divide%20m%20%3D%20-1%20%20%3C%2Fspan%3E%20Now%2C%20plug%20that%20slope%20and%20one%20set%20of%20your%20given%20coordinates%20into%20point-slope%20form%2C%20%5Btex%5Dy%20-%20y_1%20%3D%20m%28x%20-%20x_1%29)
. I'll use (-1, 7).
<span>

Plug in your points and slope
</span>y - 7 = -1(x - -1) Cancel out the double negative
y - 7 = -1(x + 1) Use the Distributive Property
y - 7 = -x - 1 Add 7 to both sides
y = -x + 6
</span>
Answer:


Step-by-step explanation:
Given
--- Height
--- Width
---- Length
Solving (a): The lateral surface area (L)
This is calculated as:

This gives:



Solving (b): The total surface area (T)
This is calculated as:

This gives:



