Answer:
1st of all differentiate the eq with respect to time, you will get dx/dt i.e velocity.
dt/dt=d(ax^2)/dt+d(bx)/dt
or, 1=2ax(dx/dt)+b(dx/dt);
or,1=(2ax+b)dx/dt;
0r dx/dt=1/(2ax+b)
so, velocity v=dx/dt=(2ax+b)^-1
now, acceleration =dv/dt=-1(2ax+b)^-2(2a+0);
or dv/dt=-2a/(2ax+b)^2;
here acceleration is the function of x i.e position of the particle so acceleration will vary position to position