Answer:
∠TUY = 120°
Step-by-step explanation:
There are two rules you can apply here:
1) The sum of the angles inside a triangle is 180°. This means that ∠SUT = 180° - 70° - 50 ° = 60°
2) A vector coming out of a line two angles between itself and the line, and they add up to 180° as well. This means that ∠TUY = 180° - ∠SUT. So ∠TUY = 180° - 60° = 120°
So the missing angle one hundred and twenty degrees.
Answer:
-13
Step-by-step explanation:
1: -6-(-7)
2: change the sign to get rid of the parenthesis so -6+-7
3: add the numbers and you get -13 because 6+7=13
Question :-
- Find the Area of Rectangle , where the Lenght is 15 cm and its Breadth is 7 cm .
Answer :-
- Area of Rectangle is 105 cm² .

Diagram :-


Solution :-
» As per the provided information in the given question, we have been given that the Length of Rectangle is 15 cm . It's Breadth is given as 7 cm . And, we have been asked to calculate the Area of Rectangle.
For calculating the Area of Rectangle , we will use the Formula :-
Therefore , by Substituting the given values in the above Formula :-



Hence :-
- Area of Rectangle = 105 cm² .

Additional Information :-
![\begin{gathered}\begin{gathered}\boxed{\begin{array}{c} \\ \underline{ { \textbf {\textsf \red{ \dag \: \: More \: Formulas \: \: \dag}}}} \\ \\ \\ \footnotesize \bigstar \: \bf{Area \: _{Square} = Side \times Side} \\ \\ \\ \footnotesize\bigstar \: \bf{Area \: _{Rectangle} = Lenght \times Breadth} \\ \\ \\ \footnotesize \bigstar \: \bf{Area \: _{Triangle} = \frac{1}{2} \times Base \times Height } \\ \\ \\ \footnotesize \bigstar \: \bf{Area \: _{Parallelogram} = Base \times Height} \\ \\ \\ \footnotesize \bigstar \: \bf{Area \: _{Trapezium} = \frac{1}{2} \times [ \: A + B \: ] \times Height } \\ \\ \\ \footnotesize \bigstar \: \bf {Area \: _{Rhombus} = \frac{1}{2} \times Diagonal \: 1 \times Diagonal \: 2}\end{array}}\end{gathered}\end{gathered}](https://tex.z-dn.net/?f=%20%5Cbegin%7Bgathered%7D%5Cbegin%7Bgathered%7D%5Cboxed%7B%5Cbegin%7Barray%7D%7Bc%7D%20%5C%5C%20%5Cunderline%7B%20%7B%20%5Ctextbf%20%7B%5Ctextsf%20%5Cred%7B%20%5Cdag%20%5C%3A%20%20%5C%3A%20More%20%5C%3A%20Formulas%20%5C%3A%20%20%5C%3A%20%20%5Cdag%7D%7D%7D%7D%20%5C%5C%20%20%5C%5C%20%20%5C%5C%20%20%5Cfootnotesize%20%5Cbigstar%20%20%5C%3A%20%20%5Cbf%7BArea%20%5C%3A%20_%7BSquare%7D%20%3D%20Side%20%5Ctimes%20Side%7D%20%20%5C%5C%20%20%5C%5C%20%20%5C%5C%20%20%20%5Cfootnotesize%5Cbigstar%20%20%5C%3A%20%20%5Cbf%7BArea%20%5C%3A%20_%7BRectangle%7D%20%3D%20Lenght%20%5Ctimes%20Breadth%7D%20%5C%5C%20%20%5C%5C%20%20%5C%5C%20%20%5Cfootnotesize%20%5Cbigstar%20%5C%3A%20%20%5Cbf%7BArea%20%5C%3A%20_%7BTriangle%7D%20%3D%20%20%5Cfrac%7B1%7D%7B2%7D%20%5Ctimes%20Base%20%5Ctimes%20Height%20%7D%20%5C%5C%20%20%5C%5C%20%20%5C%5C%20%20%5Cfootnotesize%20%5Cbigstar%20%5C%3A%20%20%5Cbf%7BArea%20%5C%3A%20_%7BParallelogram%7D%20%3D%20Base%20%5Ctimes%20Height%7D%20%5C%5C%20%20%5C%5C%20%20%5C%5C%20%20%5Cfootnotesize%20%5Cbigstar%20%5C%3A%20%20%5Cbf%7BArea%20%5C%3A%20_%7BTrapezium%7D%20%3D%20%20%5Cfrac%7B1%7D%7B2%7D%20%5Ctimes%20%5B%20%5C%3A%20A%20%2B%20B%20%5C%3A%20%5D%20%5Ctimes%20Height%20%7D%20%5C%5C%20%5C%5C%20%5C%5C%20%5Cfootnotesize%20%5Cbigstar%20%5C%3A%20%5Cbf%20%7BArea%20%5C%3A%20_%7BRhombus%7D%20%3D%20%5Cfrac%7B1%7D%7B2%7D%20%5Ctimes%20Diagonal%20%5C%3A%201%20%5Ctimes%20Diagonal%20%5C%3A%202%7D%5Cend%7Barray%7D%7D%5Cend%7Bgathered%7D%5Cend%7Bgathered%7D%20)
B. You need to add 73 and 73