Nah this is easy. LQM is a rough estimate of 4050, which every angle is 70 degrees because it’s an acute triangle
Hi x=mx+b is slope intercept form
Answer:
<em>P</em><em>L</em><em>E</em><em>A</em><em>S</em><em>E</em><em> </em><em>S</em><em>H</em><em>O</em><em>W</em><em> </em><em>T</em><em>H</em><em>E</em><em> </em><em>F</em><em>I</em><em>G</em><em>U</em><em>R</em><em>E</em><em> </em><em>O</em><em>F</em><em> </em><em>T</em><em>R</em><em>I</em><em>A</em><em>N</em><em>G</em><em>L</em><em>E</em><em> </em><em>.</em><em>.</em><em>O</em><em>N</em><em>L</em><em>Y</em><em> </em><em>Q</em><em>.</em><em> </em><em>I</em><em>S</em><em> </em><em>S</em><em>E</em><em>E</em><em>N</em><em> </em><em>N</em><em>O</em><em> </em><em>D</em><em>I</em><em>A</em><em>G</em><em>R</em><em>A</em><em>M</em>
>18+0.10 times 40= $22 and add 0.10 times 4=0.40=$22.40
>You need to get 0.08 into a multiple of ten so 8 times by 5=0.40
>go back to the plan A =$22.40- 44 minutes of calls.
>go back to the plan B =$22.40- 5 minutes of calls
Answer:
Part 1) When the amount of calling is 450 minutes the two plans cost the same
Part 2) When the two plans cost the same , the cost is $68.50
Step-by-step explanation:
Part 1) For what amount of calling do the two plans cost the same?
Let
x ---> the number of minutes
y ----> the total cost
we know that
The linear equation in slope intercept form is equal to

where
m is the slope or unit rate of the linear equation
b is the y-intercept or initial value
In this problem we have
Plan A
The slope is equal to

The y-intercept is

substitute
----> equation A
Plan B
The slope is equal to

The y-intercept is

substitute
----> equation B
Equate equation A and equation B

solve for x

therefore
When the amount of calling is 450 minutes the two plans cost the same
Part 2) What is the cost when the two plans cost the same?
substitute the value of x=450 minutes in equation A or equation B and solve for y

therefore
When the two plans cost the same , the cost is $68.50