Given:
The base of 40-foot ladder is 8 feet from the wall.
To find:
How high is the ladder on the wall (round to the nearest foot).
Solution:
Ladder makes a right angle triangle with wall and ground.
We have,
Length of ladder (hypotenuse)= 40 foot
Base = 8 foot
We need to find the perpendicular to get the height of the ladder on the wall.
Let h be the height of the ladder on the wall.
According to the Pythagoras theorem,
![Hypotenuse^2=Base^2+Perpendicular^2](https://tex.z-dn.net/?f=Hypotenuse%5E2%3DBase%5E2%2BPerpendicular%5E2)
![(40)^2=(8)^2+(h)^2](https://tex.z-dn.net/?f=%2840%29%5E2%3D%288%29%5E2%2B%28h%29%5E2)
![1600=64+h^2](https://tex.z-dn.net/?f=1600%3D64%2Bh%5E2)
![1600-64=h^2](https://tex.z-dn.net/?f=1600-64%3Dh%5E2)
![1536=h^2](https://tex.z-dn.net/?f=1536%3Dh%5E2)
Taking square root on both sides.
![\pm \sqrt{1536}=h](https://tex.z-dn.net/?f=%5Cpm%20%5Csqrt%7B1536%7D%3Dh)
![\pm 39.1918358=h](https://tex.z-dn.net/?f=%5Cpm%2039.1918358%3Dh)
Height cannot be negative. Round to the nearest foot.
![h\approx 39](https://tex.z-dn.net/?f=h%5Capprox%2039)
Therefore, the height of the ladder on the wall is 39 foot.
Answer:
100 m3
Step-by-step explanation:
2*5*10 = 10*10 *100
Yes it does if u divide 40 by 25 u get a remainder of 15
The perimeter of a triangle is the sum of its side lengths.
The perimeter of the triangle is: ![14d + 7f +7](https://tex.z-dn.net/?f=14d%20%2B%207f%20%2B7)
<u>The sides of the triangle are:</u>
Side 1 = (8d - 3) cm
Side 2 = (6d + 2) cm
Side 3 = (7f + 8) cm
The perimeter (P) is calculated as:
P = Side 1 + Side 2 + Side 3
So, we have:
![P = (8d - 3) + (6d + 2) + (7f + 8)](https://tex.z-dn.net/?f=P%20%3D%20%288d%20-%203%29%20%2B%20%286d%20%2B%202%29%20%2B%20%287f%20%2B%208%29)
Remove brackets
![P = 8d - 3 + 6d + 2 + 7f + 8](https://tex.z-dn.net/?f=P%20%3D%208d%20-%203%20%2B%206d%20%2B%202%20%2B%207f%20%2B%208)
Collect like terms
![P = 8d + 6d + 7f - 3 + 2 + 8](https://tex.z-dn.net/?f=P%20%3D%208d%20%20%2B%206d%20%2B%207f%20-%203%20%2B%202%20%2B%208)
![P = 14d + 7f +7](https://tex.z-dn.net/?f=P%20%3D%2014d%20%2B%207f%20%2B7)
Hence, the perimeter of the triangle is: ![14d + 7f +7](https://tex.z-dn.net/?f=14d%20%2B%207f%20%2B7)
Read more about perimeters at:
brainly.com/question/6465134