Answer:
4.05% probability that a randomly selected adult has an IQ greater than 123.4.
Step-by-step explanation:
Problems of normally distributed samples are solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this question, we have that:

Probability that a randomly selected adult has an IQ greater than 123.4.
This is 1 subtracted by the pvalue of Z when X = 123.4. So



has a pvalue of 0.9595
1 - 0.9595 = 0.0405
4.05% probability that a randomly selected adult has an IQ greater than 123.4.
The third option: uses visual representation of the logical...
Answer:
This is only true with a cube
Step-by-step explanation:
Only a cube has 6 equal faces of equal size.
I can't really put a diagram here so i hope that explanation helped!
Stay safe! <3
Answer:
As few as just over 345 minutes (23×15) or as many as just under 375 minutes (25×15).
Imagine a simpler problem: the bell has rung just two times since Ms. Johnson went into her office. How long has Ms. Johnson been in her office? It could be almost as short as just 15 minutes (1×15), if Ms. Johnson went into her office just before the bell rang the first time, and the bell has just rung again for the second time.
Or it could be almost as long as 45 minutes (3×15), if Ms. Johnson went into her office just after the bells rang, and then 15 minutes later the bells rang for the first time, and then 15 minutes after that the bells rang for the second time, and now it’s been 15 minutes after that.
So if the bells have run two times since Ms. Johnson went into her office, she could have been there between 15 minutes and 45 minutes. The same logic applies to the case where the bells have rung 24 times—it could have been any duration between 345 and 375 minutes since the moment we started paying attention to the bells!
Step-by-step explanation: