5. Start by finding how many tiles make up the outer edge of the pool. We know that each tile is 3/4 foot, and that the entire length is 12 feet. So by doing a division, we'll find how many tiles there are:
12 ÷ 3/4 = 16. By looking at the picture, we can confirm this. By looking at the picture we also see that the pool is the same length as 14 tiles, so the fraction is 14/16 -> 7/8.
<em>Hey</em><em>!</em><em>!</em><em>!</em>
<em>here</em><em>'s</em><em> </em><em>your</em><em> </em><em>answer</em>
<em>X+</em><em>1</em><em>2</em><em>8</em><em>=</em><em>1</em><em>8</em><em>0</em><em>(</em><em> </em><em>sum</em><em> </em><em>of</em><em> </em><em>angle</em><em> </em><em>in</em><em> </em><em>straight</em><em> </em><em>line</em><em>)</em>
<em>or</em><em>,</em><em>X=</em><em>1</em><em>8</em><em>0</em><em>-</em><em>1</em><em>2</em><em>8</em>
<em>X=</em><em>5</em><em>2</em><em> </em><em>degree</em><em>.</em>
<em>So</em><em> </em><em>the</em><em> </em><em>value</em><em> </em><em>of</em><em> </em><em>X </em><em>is</em><em> </em><em>5</em><em>2</em><em> </em><em>degree</em><em>.</em>
<em>Hope</em><em> </em><em>it</em><em> </em><em>helps</em><em>.</em><em>.</em><em>.</em>
<em>Good</em><em> </em><em>luck</em><em> </em><em>on</em><em> </em><em>your</em><em> </em><em>assignment</em>
20 earth pounds on the moon would equate to 3.31 pounds.
Answer:
I) If method I is used, population of generalization will include all those people who may have varying exercising habits or routines. They may or may not have a regular excersing habit. In his case sample is taken from a more diverse population
II) Population of generalization will include people who will have similar excersing routines and habits if method II is used since sample is choosen from a specific population
Step-by-step explanation:
past excercising habits may affect the change in intensity to a targeted excersise in different manner. So in method I a greater diversity is included and result of excersing with or without a trainer will account for greater number of variables than method II.