1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Tomtit [17]
2 years ago
10

How do u work this question out

Mathematics
1 answer:
zhenek [66]2 years ago
3 0
Find the coordinates, which are (5,4) and (6,8)
You might be interested in
RESULTADO DE 79 MAS X IGUAL 452
EastWind [94]
El resultado de 79 mas X igual 452 es 141
3 0
3 years ago
Solve r = cs/d for c
Nady [450]
r=\frac{cs}{d}\\\\\frac{cs}{d}=r\ \ \ \ |multiply\ both\ sides\ by\ d\\\\cs=dr\ \ \ \ \ \ |divide\ both\ sides\ by\ s\\\\\boxed{c=\frac{dr}{s}}
6 0
3 years ago
In the following problem, check that it is appropriate to use the normal approximation to the binomial. Then use the normal dist
frosja888 [35]

Answer:

a) 0.9920 = 99.20% probability that 15 or more will live beyond their 90th birthday

b) 0.2946  = 29.46% probability that 30 or more will live beyond their 90th birthday

c) 0.6273 = 62.73% probability that between 25 and 35 will live beyond their 90th birthday

d) 0.0034 = 0.34% probability that more than 40 will live beyond their 90th birthday

Step-by-step explanation:

We solve this question using the normal approximation to the binomial distribution.

Binomial probability distribution

Probability of exactly x sucesses on n repeated trials, with p probability.

Can be approximated to a normal distribution, using the expected value and the standard deviation.

The expected value of the binomial distribution is:

E(X) = np

The standard deviation of the binomial distribution is:

\sqrt{V(X)} = \sqrt{np(1-p)}

Normal probability distribution

Problems of normally distributed distributions can be solved using the z-score formula.

In a set with mean \mu and standard deviation \sigma, the zscore of a measure X is given by:

Z = \frac{X - \mu}{\sigma}

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.

When we are approximating a binomial distribution to a normal one, we have that \mu = E(X), \sigma = \sqrt{V(X)}.

In this problem, we have that:

Sample of 723, 3.7% will live past their 90th birthday.

This means that n = 723, p = 0.037.

So for the approximation, we will have:

\mu = E(X) = np = 723*0.037 = 26.751

\sigma = \sqrt{V(X)} = \sqrt{np(1-p)} = \sqrt{723*0.037*0.963} = 5.08

(a) 15 or more will live beyond their 90th birthday

This is, using continuity correction, P(X \geq 15 - 0.5) = P(X \geq 14.5), which is 1 subtracted by the pvalue of Z when X = 14.5. So

Z = \frac{X - \mu}{\sigma}

Z = \frac{14.5 - 26.751}{5.08}

Z = -2.41

Z = -2.41 has a pvalue of 0.0080

1 - 0.0080 = 0.9920

0.9920 = 99.20% probability that 15 or more will live beyond their 90th birthday

(b) 30 or more will live beyond their 90th birthday

This is, using continuity correction, P(X \geq 30 - 0.5) = P(X \geq 29.5), which is 1 subtracted by the pvalue of Z when X = 29.5. So

Z = \frac{X - \mu}{\sigma}

Z = \frac{29.5 - 26.751}{5.08}

Z = 0.54

Z = 0.54 has a pvalue of 0.7054

1 - 0.7054 = 0.2946

0.2946  = 29.46% probability that 30 or more will live beyond their 90th birthday

(c) between 25 and 35 will live beyond their 90th birthday

This is, using continuity correction, P(25 - 0.5 \leq X \leq 35 + 0.5) = P(X 24.5 \leq X \leq 35.5), which is the pvalue of Z when X = 35.5 subtracted by the pvalue of Z when X = 24.5. So

X = 35.5

Z = \frac{X - \mu}{\sigma}

Z = \frac{35.5 - 26.751}{5.08}

Z = 1.72

Z = 1.72 has a pvalue of 0.9573

X = 24.5

Z = \frac{X - \mu}{\sigma}

Z = \frac{24.5 - 26.751}{5.08}

Z = -0.44

Z = -0.44 has a pvalue of 0.3300

0.9573 - 0.3300 = 0.6273

0.6273 = 62.73% probability that between 25 and 35 will live beyond their 90th birthday.

(d) more than 40 will live beyond their 90th birthday

This is, using continuity correction, P(X > 40+0.5) = P(X > 40.5), which is 1 subtracted by the pvalue of Z when X = 40.5. So

Z = \frac{X - \mu}{\sigma}

Z = \frac{40.5 - 26.751}{5.08}

Z = 2.71

Z = 2.71 has a pvalue of 0.9966

1 - 0.9966 = 0.0034

0.0034 = 0.34% probability that more than 40 will live beyond their 90th birthday

6 0
3 years ago
Plz help me asap!!!!!!!!!!!
Semenov [28]
The second one is it.
7 0
3 years ago
What’s in between 10.3 and 12.1
Brums [2.3K]

Answer:

11.3

Step-by-step explanation:

4 0
3 years ago
Read 2 more answers
Other questions:
  • What is the value of y in the equation 4 + y = −3?<br><br> A: 7<br> B: 1<br> C: −1<br> D: −7
    14·2 answers
  • Write an equivalent expression for 9 (3+8x)
    6·1 answer
  • The cycle of a traffic light at an intersection of two streets is 35 seconds​ green, 7 seconds​ yellow, and 18 seconds red. If y
    15·1 answer
  • Troy drove 8 miles due east and then six miles due north. How far is Troy from his starting point?
    12·1 answer
  • 2. What is the exact area of a circle having radius 7 in.?
    12·1 answer
  • 9s plus 3=57 pls help me
    5·1 answer
  • What is the 5th term of the geometric sequence 3/20,3/2,15...?
    5·1 answer
  • If 5(x + 7)= -3, then 5x +35= -3
    15·1 answer
  • Please please help asap!! 19 points
    7·2 answers
  • The actual length of the ship is 575 feet. The scale of the model is 1 inch: 25 feet. What will be the length of the model?
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!