Answer:
0
Step-by-step explanation:
f(0) = -2(0)²
= -2(0)
= 0
Answer:
f'(1)=150ln(1.5)
Step-by-step explanation:
I'm not sure why you would need a table since the limit definition of a derivative (from what I'm remembering) gives you the exact formula anyway... so hopefully this at least helps point you in the right direction.
My work is in the attachment but I do want to address the elephant on the blackboard real quick.
You'll see that I got to the point where I isolated the h's and just stated the limit equaled the natural log of something out of nowhere. This is because, as far as I know, the way to show that is true is through the use of limits going to infinity. And I'm assuming that you haven't even begun to talk about infinite limits yet, so I'm gonna ask you to just trust that that is true. (Also the proof is a little long and could be a question on it's own tbh. There are actually other methods to take this derivative but they involve knowing other derivatives and that kinda spoils a question of this caliber.)
Put the value of x to the inequality:

Answer: Depends on what you come up with . /:
Step-by-step explanation:
3x-11+x+9= if u no the form for this... -x with 3x and -9 -11 should to a division problem so u divide from both sides leaving x = your sum.
Complete question is;
Multiple-choice questions each have 5 possible answers, one of which is correct. Assume that you guess the answers to 5 such questions.
Use the multiplication rule to find the probability that the first four guesses are wrong and the fifth is correct. That is, find P(WWWWC), where C denotes a correct answer and W denotes a wrong answer.
P(WWWWC) =
Answer:
P(WWWWC) = 0.0819
Step-by-step explanation:
We are told that each question has 5 possible answers and only 1 is correct. Thus, the probability of getting the right answer in any question is =
(number of correct choices)/(total number of choices) = 1/5
Meanwhile,since only 1 of the possible answers is correct, then there will be 4 incorrect answers. Thus, the probability of choosing the wrong answer would be;
(number of incorrect choices)/(total number of choices) = 4/5
Now, we want to find the probability of getting the 1st 4 guesses wrong and the 5th one correct. To do this we will simply multiply the probabilities of each individual event by each other.
Thus;
P(WWWWC) = (4/5) × (4/5) × (4/5) × (4/5) × (1/5) = 256/3125 ≈ 0.0819
P(WWWWC) = 0.0819