Answer:
0.007%
Step-by-step explanation:
4000/28=0.007%
Question:
A solar lease customer built up an excess of 6,500 kilowatts hour (kwh) during the summer using his solar panels. when he turned his electric heat on, the excess be used up at 50 kilowatts hours per day
.
(a) If E represents the excess left and d represent the number of days. Write an equation for E in terms of d
(b) How much of excess will be left after one month (1 month = 30 days)
Answer:
a. 
b. 
Step-by-step explanation:
Given
Excess = 6500kwh
Rate = 50kwh/day
Solving (a): E in terms of d
The Excess left (E) in d days is calculated using:

The expression uses minus because there's a reduction in the excess kwh on a daily basis.
Substitute values for Excess, Rate and days


Solving (b); The value of E when d = 30.
Substitute 30 for d in 



<em>Hence, there are 5000kwh left after 30 days</em>
Answer:
4448 feet²
Step-by-step explanation:
Using the formula
we can take the length, width and height and plug them in.
, solving this equation we get
.
Answer:
yes
Step-by-step explanation:
Add them up and you get 13/12, which is more than 1.
The rate of change of a linear equation (first degree) is equivalent to the slope of a line. Slope is described as the vertical movement (rise) of the line over its horizontal counterpart (run). In determining the rate of change or slope (m) given 1 data point (x',y'), point-slope form is applicable. Point-slope form is: (y-y') = m (x-x'). Substitute the given point (-5,-1) in the equation. By substitution, [y-(-1)] = m [x-(-5)]. Re-arranging the equation, the rate of change or slope is, m = (y+1)/(x+5).