This can be expanded through the tangent angle addition formula:
tan(α+β)=tanα+tanβ1−tan -α + tanβ
Thus,tan(x+y)=tanx+tany1−tan x tany
Hope it helps you
Answer:
Line up the decimal points. **Answer is Least to greatest: 10.5 , 11, 19**
Step-by-step explanation:
You need to line each number up.
10.5
11.0
19.0
The reason why 11 and 19 have a decimal point and zero at the end is because you need to do that in order to compare the numbers.
This problem is also a little common sense because 10.5 is the smallest, 19 is the largest while 11 is in the middle.
Answer:
Step-by-step explanation:
If you want to determine the domain and range of this analytically, you first need to factor the numerator and denominator to see if there is a common factor that can be reduced away. If there is, this affects the domain. The domain are the values in the denominator that the function covers as far as the x-values go. If we factor both the numerator and denominator, we get this:

Since there is a common factor in the numerator and the denominator, (x + 3), we can reduce those away. That type of discontinuity is called a removeable discontinuity and creates a hole in the graph at that value of x. The other factor, (x - 4), does not cancel out. This is called a vertical asymptote and affects the domain of the function. Since the denominator of a rational function (or any fraction, for that matter!) can't EVER equal 0, we see that the denominator of this function goes to 0 where x = 4. That means that the function has to split at that x-value. It comes in from the left, from negative infinity and goes down to negative infinity at x = 4. Then the graph picks up again to the right of x = 4 and comes from positive infinity and goes to positive infinity. The domain is:
(-∞, 4) U (4, ∞)
The range is (-∞, ∞)
If you're having trouble following the wording, refer to the graph of the function on your calculator and it should become apparent.
Answer:
A. About 4,900 ft
Step-by-step explanation:
We want h such that ...
5 = 10·ln(h) -80
8.5 = ln(h) . . . . . . . add 80, divide by 10
e^8.5 = h ≈ 4914.8 . . . . take the antilog
h ≈ 4900 . . . . feet