Answer:
<em>a. The cart's acceleration is 2 m/s^2</em>
<em>b. The cart will travel 100 m</em>
<em>c. The speed is 20 m/s</em>
Explanation:
a. The acceleration of the cart can be calculated using Newton's second law:
F = m.a
Solving for a:

The cart has a mass of m=15 Kg and is applied a net force of F=30 N, thus:


b.
Now we use kinematics to find the distance and speed:

The cart starts from rest (vo=0). The distance traveled in t=10 seconds is:


The cart will travel 100 m
c.
The final speed is calculated by:

The speed is 20 m/s
Answer:
speed when it reaches y = 4.00cm is
v = 14.9 g.m/s
Explanation:
given
q₁=q₂ =2.00 ×10⁻⁶
distance along x = 3.00cm= 3×10⁻²
q₃= 4×10⁻⁶C
mass= 10×10 ⁻³g
distance along y = 4×10⁻²m
r₁ =
=
= 3.61cm = 0.036m
r₂ =
=
= 5cm = 0.05m
electric potential V = 
change in potential ΔV = 
ΔV =
, where
2.00μC
ΔV = 
ΔV = 2 × 9×10⁹ × 2×10⁻⁶ × 
ΔV= 2.789×10⁵
= ΔV × q₃
ˣ 10×10⁻³ ×v² = 2.789×10⁵× 4 ×10⁻⁶
v² = 223.12 g.m/s
v = 14.9 g.m/s
I think it will go down like decrease minus or whatever you call it
Answer:
speed = 63.5 km/hr
Explanation:
let me know if that works
Answer:
correct answer is Precipitous vaginal delivery
Explanation:
given data
cervix dilated = 4 cm
effaced = 100%
delivery = 5 minutes later
solution
correct answer is Precipitous vaginal delivery because precipitous take delivery time less than = 3 hours
A multipara progress at rate 1.5 cm of dilation per hour
and it is progress for 10 cm for the deliver and birth averages approx 20 minute
so here correct answer is Precipitous vaginal delivery