Answer:
licensed drivers who makes calls while driving
Step-by-step explanation:
Figure out how many times 15 can go into 45 then once u got that u divided by 9 i think..
The line y = x and y = -x + 4 intersect when at the point (2, 2).
Expresing y = -x + 4 in terms of x, we have x = 4 - y.
Thus, the area of the region bounded by the <span>graphs of y = x, y = −x + 4, and y = 0 is given by
![\int\limits^2_0 {(y-(4-y))} \, dy = \int\limits^2_0 {(y-4+y)} \, dy \\ \\ = \int\limits^2_0 {(2y-4)} \, dy= \left[y^2-4y\right]_0^2 =|(2)^2-4(2)| \\ \\ =|4-8|=|-4|=4](https://tex.z-dn.net/?f=%20%5Cint%5Climits%5E2_0%20%7B%28y-%284-y%29%29%7D%20%5C%2C%20dy%20%3D%20%5Cint%5Climits%5E2_0%20%7B%28y-4%2By%29%7D%20%5C%2C%20dy%20%5C%5C%20%20%5C%5C%20%3D%20%5Cint%5Climits%5E2_0%20%7B%282y-4%29%7D%20%5C%2C%20dy%3D%20%5Cleft%5By%5E2-4y%5Cright%5D_0%5E2%20%3D%7C%282%29%5E2-4%282%29%7C%20%5C%5C%20%20%5C%5C%20%3D%7C4-8%7C%3D%7C-4%7C%3D4)
Therefore, the area bounded by the lines is 4 square units.
</span>
To find in how many ways this can be done, we can use the method of combination.
As the customer have to choose 2 out of 3 appetizers, the combination would be 3C2.
For 4 out of 5 main courses, the combination wouls be 5C4.
For 6 out of 8 desserts, the combination would be 8C6.
We can then combine them into a single equation to find the answer:
3C2 x 5C4 x 8C6
=420
Therefore, the answer is 420 ways.
Hope it helps!