Answer:
<u>The measure of the arc CD = 64°</u>
Step-by-step explanation:
It is required to find the measure of the arc CD in degrees.
So, as shown at the graph
BE and AD are are diameters of circle P
And ∠APE is a right angle ⇒ ∠APE = 90°
So, BE⊥AD
And so, ∠BPE = 90° ⇒(1)
But it is given: ∠BPE = (33k-9)° ⇒(2)
From (1) and (2)
∴ 33k - 9 = 90
∴ 33k = 90 + 9 = 99
∴ k = 99/33 = 3
The measure of the arc CD = ∠CPD = 20k + 4
By substitution with k
<u>∴ The measure of the arc CD = 20*3 + 4 = 60 + 4 = 64°</u>
Given:
The equation of circle is

To find:
The polar form of given circle.
Solution:
We have,

![[\because (a+b)^2=a^2+2ab+b^2]](https://tex.z-dn.net/?f=%5B%5Cbecause%20%28a%2Bb%29%5E2%3Da%5E2%2B2ab%2Bb%5E2%5D)

Subtracting 9 from both sides, we get

We know that,
and
.


and 
We know that, r is radius it cannot be 0. So,


Therefore, the correct option is A.
Answer:12
Step-by-step explanation: