It is given that that initial volume of gas is 20 cubic inches.
The initial pressure is given as 5 psi.
The final pressure is given as 10 psi
We are asked to calculate the final volume.
Let initial and final volume of gas is denoted as 
Let the initial and final pressure of gas is denoted as 
As per the question the temperature of a gas is constant.
From Boyle's law we know that pressure of a given mass of a gas is inversely proportional to the applied volume at constant temperature.
Hence mathematically




Putting the values of these respective quantities as mentioned above we get-

[ans]
I’m gonna do it for a while I will be on soon buddy I don’t know want me in my class I’m going out with you and I don’t know ♂️ is
Answer:
condensation - thermal energy removed
freezing -thermal energy removed
deposition - thermal energy removed
sublimation - thermal energy added
evaporation - thermal energy added
melting - thermal energy added
Explanation:
Thermal energy is heat energy. Processes in which heat is added involve the addition of thermal energy while processes in which heat energy is removed involves removal of thermal energy.
Condensation involves a change from gas to liquid, freezing involves a change from liquid to solid while deposition involves the settling of mobile particles at a place. All these processes involve a decrease in energy of particles.
On the other hand, sublimation is a direct change from solid to gas, melting involves a change from solid to liquid while evaporation involves a change from liquid to gas. All these processes occur when energy is added to the particles in a system.
Answer:
The vector magnitudes F and r are always postive, so the sign o W is determined entirely by the angle e between the force and the displacement.Submit Figure 1 off 1 part C
Answer:
d. from the equilibrium position to the bottom and then back to the equilibrium.
g. from the top position to the bottom and then back to the top.
h. from the bottom position to the top and then back to the bottom.
Explanation:
It is the case of SHM or Simple Harmonic Motion. Firstly, there is a need to understand the time interval or time period. The standard definition of time period in simple harmonic motion is
"the time period required for the system to complete its one cycle"
Now one have to consider that the system given above, the motion of mass attached to spring will follow the path of motion from equilibrium point to bottom to equilibrium point to top, then equilibrium point to the bottom and so on.
to choose right answer you must have to consider the option, in which the starting point and ending point of the mass is same. If mass starts from top, the time it will take to reach on top again, will be defined as its time period and so in the case of bottom or equilibrium as starting point. Hence, "d", "g" and "h" are right answers.